

The DELTA project has received funding from the EU’s Horizon 2020 research
and innovation programme under grant agreement No 773960

Project Acronym: DELTA

Project Full Title: Future tamper-proof Demand rEsponse framework through seLf-

configured, self-opTimized and collAborative virtual distributed energy

nodes

Grant Agreement: 773960

Project Duration: 36 months (01/05/2018 – 30/04/2021)

DELIVERABLE D5.1

Secure Information Exchange by Design in Energy

Markets

Work Package WP5 – Secure Data Handling and Exchange in future DR

ecosystem

Task T5.1 – Secure Information Exchange by Design in Energy

Markets

Document Status: Final

File Name: DELTA_D5.1_v1.0

Due Date: 31.10.2019

Submission Date: 05.11.2019

Lead Beneficiary: NTNU

Dissemination Level

Public X

Confidential, only for members of the Consortium (including the Commission Services)

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 2

Authors List

Leading Authors

First Name Last Name Beneficiary Contact e-mail

Alessio Baiocco NTNU alessio.baiocco@ntnu.no

Georgios Spathoulas NTNU georgios.spathoulas@ntnu.no

Co-Author(s)

First Name Last Name Beneficiary Contact e-mail

1 Juan Cano-Benito UPM Jcano@fi.upm.es

2 Andrea Cimmino UPM cimmino@fi.upm.es

3 Nikoleta Andreadou JRC Nikoleta.ANDREADOU@ec.europa.eu

4 Ioannis Poursanidis JRC Ioannis.POURSANIDIS@ext.ec.europa.eu

5 Christos Patsonakis CERTH cpatsonakis@iti.gr

6 Sofia Terzi CERTH sterzi@iti.gr

Reviewers List

Reviewers

First Name Last Name Beneficiary Contact e-mail

Dimosthenis Ioannidis CERTH djoannid@iti.gr

Ioannis Moschos CERTH imoschos@iti.gr

George Karagiannopoulos HIT g.karagiannopoulos@hit-

innovations.com

Legal Disclaimer

The DELTA has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 773960. The sole responsibility for the content of this

publication lies with the authors. It does not necessarily reflect the opinion of the Innovation and

Networks Executive Agency (INEA) or the European Commission (EC). INEA or the EC are not

responsible for any use that may be made of the information contained therein.

mailto:alessio.baiocco@ntnu.no
mailto:georgios.spathoulas@ntnu.no
mailto:Jcano@fi.upm.es
mailto:cimmino@fi.upm.es
mailto:Nikoleta.ANDREADOU@ec.europa.eu
mailto:Ioannis.POURSANIDIS@ext.ec.europa.eu
mailto:cpatsonakis@iti.gr
mailto:sterzi@iti.gr
mailto:djoannid@iti.gr
mailto:imoschos@iti.gr
mailto:g.karagiannopoulos@hit-innovations.com
mailto:g.karagiannopoulos@hit-innovations.com

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 3

Copyright

© NTNU. Copies of this publication – also of extracts thereof – may only be made with reference to

the publisher.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 4

Executive Summary

This deliverable presents the results of “T5.1 - Secure Information Exchange by Design in Energy

Markets”, which entails the definition, design and development of and end-to-end secure, privacy-

preserving information exchange framework among all the entities that participate in DELTA’s

ecosystem, as well as, all the layers comprising DELTA’s architecture.

The content provided in this document is structured in a way that illustrates the involved steps in our

design methodology. The main building block upon which we design and develop DELTA’s secure

information exchange framework are standard-based schemes for managing digital identities. We

survey the most widely deployed standards on this topic that are commercially used by enterprises

globally and present the construction of DELTA’s identity services. We elaborate on issues pertaining

to the representation of the identities of all the actors that are involved in DELTA’s ecosystem.

Furthermore, we present procedures that handle the lifecycle of those identities in the context of

DELTA. This identity layer provides the necessary means to design and implement access control

policies.

To regulate access to the data that is maintained throughout the DELTA platform, we present the

design of DELTA’s access control layer. We illustrate our methodology in designing this layer by

reviewing the most widely deployed schemes that provide this functionality, illustrating their

appropriateness in terms of deployment and, more specifically, regarding their applicability in

DELTA’s context.

As this is DELTA’s main security-related deliverable, we also tackle with the issue of privacy. More

specifically, we provide a definition of the term privacy that is tailored to the DELTA’s ecosystem and

illustrate how we employ the previously introduced layers to achieve it, while taking into

consideration the outcomes of previous work packages.

DELTA’s inherent distributed architecture introduces additional challenges that, from a security point

of view, need to be addressed. First, it is imperative to deal with the asynchrony of the underlying

networking infrastructure, i.e., the Internet. We completely address this issue by introducing

standardized services that will synchronize the clocks of all the components in DELTA’s architecture.

We stress that the handling of timestamps is not only relevant security-wise, but it is inherent to

DELTA’s functionality, especially in regards to the servicing and monitoring of the status of DR

events.

Up to this point, we have introduced mechanisms that guarantee security and privacy of each layer,

however, in isolation. To expand these properties across all layers that comprise DELTA’s

architecture, we introduce the secure design of DELTA’s peer-to-peer (P2P) network, which is the

main medium upon which DELTA components exchange data and is mandated by OpenADR 2.0b to

guarantee that DELTA complies to that standard. We stress that we do not tackle only issues regarding

confidentiality, integrity and authenticity of the transmitted data, but also fault tolerance, which

provides liveness guarantees, i.e., the longevity and operation of the DELTA’s P2P network is

guaranteed, even in the presence of failures.

Lastly, we conclude by presenting some additional, security-related use cases which resulted from the

research and effort expended in drafting the content presented in this deliverable.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 5

Table of Contents

1. Introduction .. 10

1.1 Scope and objectives of the deliverable .. 10
1.2 Structure of the deliverable ... 10
1.3 Relation to Other Tasks and Deliverables ... 10

2. Identities .. 11

2.1 X.509 Certificates ... 11
2.1.1 Certificates file extensions ... 12
2.1.2 Certificate fingerprints ... 12

2.2 DELTA Identity Services .. 12
2.2.1 DELTA Identity handling procedures ... 12

2.2.1.1 Enrollment ..13
2.2.1.2 Revocation ..14

2.3 OpenADR 2.0b & XML Signatures.. 15
2.3.1 Creation of XML signatures .. 15
2.3.2 Verifying XML signatures ... 16

3. Access Control ... 17

3.1 Attribute Based Access Control (ABAC) ... 17
3.1.1 XACML ... 18
3.1.2 NIST Guide to ABAC: Definitions and Considerations .. 21
3.1.3 Next Generation Access Control (NGAC) .. 26

3.2 Role-Based Access Control (RBAC) ... 27
3.2.1 RBAC Divisions .. 28

3.2.1.1 RBAC Core...28
3.2.1.2 Hierarchical RBAC: ...29
3.2.1.3 Constrained RBAC: ...30

3.3 Access Control Schemes: Considerations .. 32
3.4 DELTA Blockchain: Access Control .. 33

3.4.1 Network Level Access Control .. 34
3.4.2 Smart Contract Level Access Control ... 34

3.5 Privacy .. 35

4. Auxiliary Security Infrastructures .. 36

4.1 NTP ... 36
4.1.1 Security Considerations ... 37

4.2 PTP .. 37
4.2.1 Security Considerations ... 39

4.3 RFC 3161 – Timestamp Authority ... 39

5. DELTA Peer-to-Peer Network: Architecture & Security ... 42

5.1 OpenFire ... 43
5.1.1 Configuration ... 43
5.1.2 Setup .. 43

5.1.2.1 Scalability & decentralization ..43
5.1.3 Privacy ... 44
5.1.4 Authentication ... 45
5.1.5 Fault Tolerance: XMPP Server Redundancy ... 45

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 6

5.1.5.1 Computer cluster ...45
5.2 Conflict policy... 46
5.3 Username Binding .. 46

6. Security-oriented aspects of FEID-related Use Cases ... 48

6.1 FEID .. 48
6.1.1 FEID Hardware Installation ... 49
6.1.2 FEID Hardware Setup and Configuration ... 50
6.1.3 FEID Component Registration .. 51
6.1.4 FEID Component Registration .. 52

7. Conclusions.. 54

References .. 55

List of Figures

Figure 1: Structure of a X.509 v3 digital certificate. .. 11

Figure 2: TLS handshake ... 13

Figure 3: Layers of OpenADR communication .. 15

Figure 4: ABAC overview [8] ... 18

Figure 5: Sequence of steps on a request in a XACML (ABAC) mechanism [10]......................... 19

Figure 6: Generic and solution specific ABAC overview [10] ... 20

Figure 7: (A) XACML Policy Constructs (B) Attribute Names and Values and the Authorization

State for Policy 1 .. 20

Figure 8: XACML reference architecture .. 21

Figure 9: Basic ABAC scenario .. 22

Figure 10: Core ABAC mechanisms .. 22

Figure 11: Enterprise ABAC Scenario Example .. 23

Figure 12: An example of ACM functional points ... 23

Figure 13: ACM NIST System Development Life Cycle.. 24

Figure 14: ACL Trust Chain .. 25

file:///D:/ApTs/DELTA/WPs/WP5/Deliverables/D5.1/%5bDELTA%5d_D5.1_Final.doc%23_Toc23872442

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 7

Figure 15: ABAC Trust Chain ... 25

Figure 16: Assignment and Association Graphs in NGAC ... 27

Figure 17: NGAC Standard Functional Architecture ... 27

Figure 18: RBAC core elements and their interconnections. .. 29

Figure 19: Hierarchical RBAC – Elements and their interconnection ... 30

Figure 20: Role hierarchies for a project: a) Role hierarchy, b) Administrative Role Hierarchy

and, c) Private and Scoped Roles ... 31

Figure 21: Static Separation of Duty relations, Constrained RBAC – elements and their

interconnection. ... 32

Figure 22: Dynamic Separation of Duty relations, Constrained RBAC – elements and their

interconnection .. 32

Figure 23: An NTP Application Example with 4 Stratums ... 36

Figure 24: Simplified PTP communication/sync scheme ... 39

Figure 25: TSA timestamping procedure .. 40

Figure 26: P2P network classification and node interconnections. ... 42

Figure 27 OpenFire “Clustering” function ... 44

Figure 28 OpenFire Encryption Protocols .. 44

Figure 29 OpenFire Authentication Functions ... 45

Figure 30: OpenFire Certificate Stores ... 47

Figure 31: Open Fire Trust Certificate Store ... 47

Figure 32: FEID board top view ... 48

Figure 33: Differences between the two TPM versions .. 49

Figure 34: High-level Use Case Diagram .. 50

Figure 35: High-level Use Case Diagram .. 51

Figure 36: High-level Use Case Diagram .. 52

file:///D:/ApTs/DELTA/WPs/WP5/Deliverables/D5.1/%5bDELTA%5d_D5.1_Final.doc%23_Toc23872465

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 8

Figure 37: High-level Use Case Diagram .. 53

List of Tables

Table 1: ABAC (XACML) building blocks [8] ... 18

Table 2: Terminology pertaining to the main entities of XACML ... 19

Table 3: ABAC mechanism steps ... 19

Table 4: ABAC policies and their role ... 24

Table 5: RBAC vs ABAC characteristics .. 32

Table 6: Allowed PTP implementations and relative performances .. 38

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 9

List of Acronyms and Abbreviations

Term Description

VPP Virtual Power Plant

BRP

DR

DSO

DVN

FEID

I
2
C

P2P

SPI

TSO

UART

PAP

PDP

PEP

PIP

PRP

XACML

ABAC

ALFA

PBAC

DoD

DAC

MAC

ACL

NPE

RSA

ECC

CA

CP

XML

Balance Responsible Player

Demand Response

Distribution System Operators

Delta Virtual Node

Fog Enabled Intelligent Device

Inter-Integrated Circuit

Peer-to-Peer

Serial Peripheral Interface

Transmission System Operator

Universal Asynchronous Receiver-Transmitter

Policy Administration Point

Policy Decision Point

Policy Enforcement Point

Policy Information Point

Policy Retrieval Point

eXtensible Access Control Markup Language

Attributes Based Access Control

Abbreviated Language for Authorization

Policy Based Access Control

Department of Defence

Discretionary Access Control

Mandatory Access Control

Access Control List

Non-Person Entity

Rivest-Shamir-Adleman

Elliptic Curve Cryptography

Certificate Authority

Certificate Policy

eXtensible Markup Language

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 10

1. Introduction

1.1 Scope and objectives of the deliverable

This deliverable is associated with Task 5.1 of the DELTA project and provides the definition, design

and development principles related to the DELTA’s security mechanisms that will provide the

necessary framework that will allow for secure information exchange amongst the involved

stakeholders.

We survey a large number of standards regarding various topics related to security, such as

confidentiality and integrity of transmitted information. Based on our research, we propose schemes

that are relevant to DELTA’s operations in order to provide for end-to-end security across all layers of

the system, while also providing seamless integration of the involved components. On a high-level,

this deliverable addresses issues that revolve around:

1. Authentication;

2. Access control;

3. Transport layer security;

The work presented here was tailored to account for diverse ecosystems that involve multiple parties

or stakeholders, as well as, a myriad of services, all of which lie at the core of DELTA.

1.2 Structure of the deliverable

The work presented in this deliverable is structured as follows.

 Chapter 2 presents concepts related to digital identities that need to be included in the DELTA

security framework, including the necessary adaptations required to support features of

OpenADR

 Chapter 3 introduces relevant and mature standards for access control and how these can be

applied in the DELTA layers. An initial design of the access control policies revolving one of

DELTA’s cybersecurity infrastructure services, i.e., DELTA’s blockchain, pertaining to both

the network, as well as, the smart contract level.

 Chapter 4 introduces additional security infrastructures that resolve the issues that stem from

the asynchronous nature of the underlying network, i.e., the Internet, that, if left unchecked,

can have severe consequences, both in terms of security, as well as, privacy.

 Chapter 5 presents the DELTA’s P2P network architecture, security and configuration.

 Chapter 6 discusses additional, security-oriented details pertaining to DELTA’s use cases with

special focus on FEIDs.

 Finally, the manuscript is concluded in Chapter 7.

1.3 Relation to Other Tasks and Deliverables

The functional and technical requirements derived in WP1, in particular pertaining to the deliverables

D1.2 and D1.3, constitute the basis upon which the contents of this deliverable were drafted. The

outcome of this report provides valuable input to the development activities of WP3, WP4 and WP5 in

regards to both the design, as well as, the implementation of all layers in DELTA’s architecture.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 11

2. Identities

The goal of this section is to introduce fundamental concepts related to digital identities and illustrate

the means under which a unique identity will be associated with each actor or stakeholder that

participates in the DELTA platform. Since the DELTA project employs the well-known standard of

OpenADR, parts of the DELTA security framework are based on the ones specified in that standard.

The security framework provided by the OpenADR Alliance establishes strict requirements to be met

and allows the final security scheme to be determined, in a standardized fashion, by individual DR

program deployments. OpenADR 2.0b uses common security mechanisms, like Transport Layer

Security (TLS), and the DR program operator will need to enforce the appropriate level of security for

their system, in order to, among others, define the permissions of some actors.

First, a description of the current certificate technology used by OpenADR is provided, i.e., X.509

certificates [1], describing the protocol overview and detailing the types of existing certificates. Then,

we elaborate on the topic of Certification Authorities (CAs). Following, some bespoke features are

defined or explained, such as the registration and the revocation processes of certificates and the

operation of encryption mechanisms. Next, the implementation of XML signatures is explained, which

is a feature suggested by the OpenADR Alliance to strengthen the security of DR deployments.

Finally, the access roles for the access control list (ACL) of DELTA are detailed.

2.1 X.509 Certificates

Information systems usually handle the identity of the components within by providing them a

certificate that uniquely identifies them. OpenADR provides for this via a well-known mechanism that

binds identity names to their respective digital identities, which is based on X.509 certificates. As this

is an industry-wide standardized approach, we adopt it as well in DELTA.

The application layer of the Open Systems Interconnection (OSI) model encompasses several security-

related protocols, such as the X.500 protocol. This protocol documents a set of computer network

standards that cover a large variety of use cases and services, such as electronic directory services.

However, the specification that turned out to be the most widespread revolves around public-key

certificates, a topic which is covered by the X.509 standard.

The X.509 standard was published in 1998 and assumes a strict hierarchical system of Certification

Authorities (CAs) for issuing digital certificates to entities/actors. Version 3 of X.509 is flexible and

extendable and provides the necessary means to support diverse hierarchies and topologies, such as

bridges and meshes, while also being applicable to peer-to-peer (P2P) communication patterns that

build on top of OpenPGP. A high-level view of the structure of a basic X.509 is illustrated in Figure 1.

Figure 1: Structure of a X.509 v3 digital certificate.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 12

2.1.1 Certificates file extensions

There are several file extensions for X.509 that encode, following different approaches, the very same

X.509 certificate, which we briefly introduce below:

 Distinguished Encoding Rules (.der): Contains the X.509 certificate in binary format;

Defined in RFC 5280 [1];

 Privacy-enhanced Electronic Mail (.pem): Used for different types of X.509v3 files that

contain ASCII data; Defined in RFC 6187 [2];

 Cryptographic Message Syntax Standard (PKCS#7, .p7b, .p7c): Defined in RFC 2315 [3].

Used by Windows operating systems for certificate exchange;

 Personal Information Exchange Syntax Standard (PKCS#12, .p12): Defined in RFC 7292

[4]. This is a potentially encrypted or signed archive file format for storing many cryptography

objects as a single file. It is commonly used to bundle a private key with its X.509 certificate

or to bundle all the members of a chain of trust;

 Canonical Encoding Rules (.cer, .ctr): This is a .pem or a .der formatted file with a different

extension;

2.1.2 Certificate fingerprints

In an OpenADR deployment, certificate fingerprints are used by the VTN to identify one or more

VENs when they connect to it for the first time. We stress that the VTN and the VEN are roles that

OpenADR defines for systems depending on their implemented functionalities and involved data

flows. In addition, depending on the characteristics of each particular deployment, it may be necessary

to also install the certificate fingerprints in the VTN back-end server configuration in order to be able

to start exchanging data with VTNs. In addition, VENs must facilitate the registration of a certificate

fingerprint, which is assumed to be transmitted out-of-band to the VTN. The fingerprint can be

generated by command line tools from an input PEM certificate, or via libraries in various

programming languages, such as Python. Unlike normal certificates (encoded as a sequence of bytes),

fingerprint certificates have a shorter size.

2.2 DELTA Identity Services

CA is a general term that encompasses various hardware and software components that create, sign,

and issue public key certificates to entities/actors. The CAs are responsible of:

 Drafting and maintaining a Certification Policy (CP).

 Issuing certificates.

 Delivering certificates to its subscribers according to the CP and other applicable policies.

 Revocation of Certificates.

 Generating, protecting, revoking, and operating with CA private keys.

 Certificate lifecycle management ensuring that all aspects of the CA’s services, operations,

and infrastructure are performed in accordance with the requirements, representations and

warranties of its CP.

 CAs act as trusted parties to facilitate the confirmation of the binding between a public key

and an identity, as well as, other attributes of the “Subject” field of the certificate.

2.2.1 DELTA Identity handling procedures

DELTA builds on top of OpenADR 2.0b, which requires TLS 1.2, a cryptographic protocol designed

to provide secure communications over a computer network. The TLS handshake (Figure 2) is capable

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 13

of exchanging client and server device certificates, validate that the certificates are trusted, establish a

symmetric encryption key for data exchange, and, finally, set the corresponding cipher suites to use for

data encryption and decryption, based on ECC or RSA, according to the following tags:

 ECC - TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

 RSA - TLS_RSA_WITH_AES_128_CBC_SHA256

The RSA and ECC cipher suites used by OpenADR employ the collision resistant SHA256 hash

function.

Figure 2: TLS handshake

Both VTNs and VENs can be configured to support any TLS version and cipher suite combination

based on the needs of a specific deployment. The certificates can be encoded in several formats, as we

have already illustrated in Section 2.1.1. These certificates follow a process of enrollment and

revocation that will describe in the following sections.

2.2.1.1 Enrollment

Certificate enrollment is the process by which a digital certificate is requested for a specific device.

The CA issues and manages the digital certificate to be used within a public key infrastructure (PKI).

This PKI is a combination of hardware, software and policies that provide reliable authentication

between users and use the information generated between these users for encryption and decryption of

messages, digital signatures and others.

Services such as authentication, confidentiality, and integrity in VENs and VTNs rely on PKI

certificates, without being limited by specific proprietary technologies. Two levels of security are

distinguished in OpenADR, i.e., ‘Standard’ and ‘High’. The main difference between these two is the

fact that the ‘Standard’ security mode uses TLS to establish secure communications between a VTN

and one or more VENs, whereas the ‘High’ security uses, additionally, XML signatures to provide

non-repudiation of the transmitted data.

PKIs rely on two main algorithms to digitally sign certificates and encrypt point-to-point

communications, i.e., RSA and ECC. ECC has a shorter key size, which makes it more efficient for

encryption, decryption and digital signatures. This feature constitutes ECC more favorable for

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 14

embedded, computationally restricted devices. However, OpenADR requires that VTNs must support

both ECC and RSA.

VENs can use one or more PKI certificates. Since VTNs must support both RSA and ECC, VENs

have an option on which one to choose.

In DELTA, the following parameters will be used for the certificates:

 ECC – 256 bits or longer keys.

 RSA – 3072 bits or longer keys.

 Certificate types – X.509v3.

Requiring PKI X.509v3 certificates to be incorporated in the devices ensures a secure two-way

communication between compatible devices. The OpenADR CP is consistent with the policies for

certification and practices established by X.509 PKI certificates.

2.2.1.2 Revocation

One of the mechanisms that any system that incorporates new components must implement is

revocation, which consists of an invalidation process for one or more previously issued certificates.

This action causes the rest of the certified entities/actors to know that the credentials of another

entity/actor have been revoked and should no longer be considered valid/trustworthy. There are

several reasons to revoke certificates, such as:

 Private key is lost or is compromised due to an unauthorized theft or disclosure.

 Violation of agreements with the subscriber.

 The digital certificate agreement has been terminated.

 Incorrect issuance or defect in the certificate.

 For false information or any other circumstance that may affect the reliability, security or

integrity of the certificate.

 The identity that the certificate has is no longer valid.

 Attributes asserted in the subscriber’s certificate are incorrect.

 The certificate was issued without the consent of the certificate recipient.

 The subscriber’s organization name changes.

 The use of the certificate is harmful due to improper use by the device.

 The CA determines that the certificate must be revoked.

The main entities that can revoke the certificates are: a) the owner of the certificate, or any authorized

representative of the owner, b) the CA, as far as the certificates are within its domain and, c) the

OpenADR PKI-PA.

A certificate revocation request must contain a timestamp, the certificate to be revoked, and a

description of the incident that led to its revocation. The party issuing the request must also be

properly authenticated by the CA. There several ways based on which the issuing party can

authenticate itself, such as:

 Logging into his account and revoking the certificate through a web portal. These web portals

typically employ a two-factor authentication system.

 Providing appropriately formatted confirmation via telephone, signed fax, signed email, postal

mail, courier service, or any other similar procedure.

 Through a corporate representative, administrator, legal or technical contact.

Following the revocation of one or more certificates, the CA publishes a Certificate Revocation List

(CRL) to its certificate repository, which is responsible for distributing digital certificates.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 15

2.3 OpenADR 2.0b & XML Signatures

XML is a W3C specification that defines a general purpose markup language, like HTML. The main

purpose of the language is to share data across different systems. An XML signature is a W3C

recommendation that defines XML syntax for digital signatures, which are used to sign data of

resources of any kind based on cryptographic algorithms that provide for data integrity and non-

repudiation. OpenADR establishes these signatures as additional security mechanisms to be

considered.

These signatures can be applied to more than one type of resource, such as sections of a XML

document, plain text, encoded files, and others. This feature characterizes the XML signature with the

ability to sign sections of important resources when, e.g., the integrity of different sections of such

resource must be preserved. This allows working on subsets of data that have multiple signatures.

These XML signatures can be of three types:

 Enveloped, where the signed element is a parent and the signature element is a child.

 Enveloping, where the signature element is the parent of the element being signed.

 Detached, where the signature element and the signed element do not have a parent-child

relationship.

To ensure high security in OpenADR, the last option will be used, which separates signatures from

their siblings. Finally, conceptually, this XML layer will be encapsulated in the last layer of

communication in OpenADR (Figure 3).

2.3.1 Creation of XML signatures

In an XML signature document, we must specify the following components, which will be necessary

for the proper functioning of the encrypted communication:

 Reference URI: To allow the system to identify the signed resource, this element will provide

a reference to the resource that is signed by a URI.

 Digest value: This element will contain the hash of the resource to be signed.

 Signature value: This element contains the digest value signed by the private key of the party

transmitting the payload.

 Key info: The key info element contains the information of the key that should be used for

signature verification. This contains information on the public key of the party transmitting the

payload.

TCP/IP

TLS

XMPP

OpenADR 2.0 message (XML)

HTTP

Figure 3: Layers of OpenADR communication

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 16

To create XML signatures, we must first identify the resource to be signed and add it to the Reference

URI element.

2.3.2 Verifying XML signatures

To verify an XML signature, the following requirements must be met:

 Check that the verification value is the same as the digest value.

 Ensure that the calculated digest of the <oadrSignedObject> field is the same as the value in

the <DigestValue> field.

 Verify if a <ReplayProtect> element is contained as <SignatureProperty>. Reject the payload

if the current date and time on the device differs from the value in the <ReplayProtect> more

than a predefined value. In addition, the nonce field may be used for further protection against

replay attacks.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 17

3. Access Control

In this section, we discuss issues revolving around access control standards, their appropriateness in

regards to deployment, as well as, the employed approach for access control handling within

DELTA’s ecosystem.

The DELTA platform relies on the communication of different virtual entities that must meet some

key functional requirements. These virtual entities are software components of the platform that must

be uniquely identified with a specific role, which will define with whom they can communicate in the

platform. In other words, these relationships are encoded in the access control list (ACL) that the

consortium has establish based on the data requirements and use cases (D1.1) [17], as well as, the data

exchanges presented in D1.2 and D1.3. Based on these deliverables, we have identified the following

entity roles:

 DVNs: The DELTA Virtual Nodes (DVNs) have direct control over the FEIDs deployed in

DELTA. Although they can control such components by means of DR signals, fetch their data

(or except the FEIDS to provide pieces of data), the DVNs are not able to choose with which

FEIDS they are allowed to interact with.

 Aggregator: The Aggregator is the DELTA component that has the overall control of the

platform. The Aggregator controls the DVNs in the platform and, among others, is responsible

for assigning FEIDS to DVNs. Lastly, the Aggregator is a privileged user that has access to all

of the interfaces that the FEIDs expose.

 Trustee: This role refers to some entities (e.g., DSOs/TSOs) that should be trusted and have

various special privileges on the platform, which are granted to them by the Aggregator. These

entities mainly interact with the Aggregator and the DVNs.

 FEID: The FEID is the component that lies closest to the end customer. Each FEID is assigned

by the Aggregator to a specific DVN, following the output of the Aggregator’s segmentation

process.

 Technicians: These are experts that install the FEIDs at the customers’ houses. They require

some special access to the DELTA platform in order to check that the FEID’s installation has

been completed successfully, which entails some limited form of interaction with the

interfaces of the Aggregator and the DVN.

 Customers: They are allowed to monitor their FEIDS, and therefore, they must be able to fetch

data from this component. Generally speaking, customers are mainly able to read a subset of

the data that the FEIDs maintain/report. Their write permissions revolve around availability

schedules for DR events. Lastly, customers are able to interface with the Aggregator’s social

collaboration platform and (partially) with is gamification engine.

3.1 Attribute Based Access Control (ABAC)

In this mechanism, attributes assigned to users and resources determine “who can access what” under

specific conditions. In general, attributes characterize users, resources, and the operating environment.

ABAC evolved from RBAC (Section 2.2.2) and it can subsume it. Key standards implementing

ABAC are the eXtensible Access Control Markup Language (XACML) and the Abbreviated

Language for Authorization (ALFA, [5]).

ABAC can be seen through the following dimensions: externalized authorization management,

dynamic authorization management, policy-based access control, fine-grained authorization. It

consists of an architecture, attributes and policies [6]. Applications of ABAC are available in the

following areas:

 API and micro-services security

 Application security

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 18

 Database security

 Data security

 Big data security

 File server security

A prediction [7] made by Gartner states that by 2020 the 70% of organizations will use ABAC. Figure

4 introduces an overview of the ABAC mechanism.

Figure 4: ABAC overview [8]

Table 1 introduces the building blocks of ABAC as implemented by employing the XACML standard.

Table 1: ABAC (XACML) building blocks [8]

Term Definition

Subject Who or what is demanding access to an information asset.

Action Action the subject wants to perform

Resource The information asset or object impacted by the action

Environment The context in which access is requested

The involved steps that need to be followed in order to complete define an ABAC mechanism are as

follows:

 Gathering the authorization requirements of an organization.

 Identifying required attributes for fulfilling the requirements.

 Authoring the authorization policies.

 Deploying the policies.

 Defining Policy Information Points (PIPs).

 Validating Policies.

3.1.1 XACML

XACML is an attribute-based access control policy language and a processing model describing how

to evaluate access requests according to the rules defined in policies [9]. Table 2 presents the

terminology pertaining to the main entities of XACML.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 19

Table 2: Terminology pertaining to the main entities of XACML

Abbr. Term Description

PAP Policy Administration

Point

Point which manages access authorization policies

PDP Policy Decision Point Point which evaluates access requests against authorization

policies before issuing access decisions

PEP Policy Enforcement

Point

Point which intercepts user’s access request to a resource,

makes a decision request to the PDP to obtain the access

decision (i.e. access to the resource is approved or rejected),

and acts on the received decision

PIP Policy Information

Point

The system entity that acts as a source of attribute values (i.e.

a resource, subject, environment)

PRP Policy Retrieval Point Point where the XACML access authorization policies are

stored, typically a database or the filesystem

ABAC mechanisms are often called Policy-based Access Control (PBAC) mechanisms due to the key

role of policies within the mechanisms. Access requests to resources are evaluated against defined

policies. A “Permit” or “Deny” state is returned accounting for the user, resource, and environment

attributes. Another example where the ABAC system is implemented through the XACML standard is

the presented in Figure 5. The steps presented in the figure are outlined in Table 3.

Figure 5: Sequence of steps on a request in a XACML (ABAC) mechanism [10]

Table 3: ABAC mechanism steps

Step 1 A request comes in for a service

Step 2 The Policy Enforcement Point (PEP) intercepts the request and passes it along to the

Policy Decision Point (PDP)

Step 3 The PDP fetches the policies from the Policy Retrieval Point (PRP)

Step 4 The PDP attempts to evaluate the policies and calls the Policy Information Point (PIP) for

any missing attributes

Step 5 The PIP calls out to other services or data stores to retrieve the required attributes

Step 6 Assuming the policy returns Approve, the request is forwarded to the service

Step 7 While not being part of the main flow, the Policy Administration Points (PAP) allows for

editing the policies.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 20

Figure 6 presents an example where generic high-level interactions (Figure 6.A) are present and

specific application steps for a solution provided for commercial purposes. Steps similar to what is

described in Table 2 apply to the solution specific example of Figure 6.B.

A

B

Figure 6: Generic and solution specific ABAC overview [10]

In XACML, policy definitions take place with the use of XML, which leads to limited readability

issues. In order to overcome this problem the ALFA language was introduced. ALFA is a language

that maintains XACML model but uses JSON instead of XML for policy definition, which simplifies a

lot the process of policy definition as well as development work.

Figure 7.A outlines how XACML access policies are structured. Combinatorial algorithms (deny-

overrides, permit-overrides) are used for combining multiple local decisions into a single global

decision. Obligation is a directive from the PDP to PEP on what must happen before or after an access

request is approved or denied. An example policy document is illustrated Figure 7.B

A

B

Figure 7: (A) XACML Policy Constructs (B) Attribute Names and Values and the Authorization

State for Policy 1

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 21

Figure 8 presents a reference XACML architecture, which depicts the chain of events that take place

on an application.

Figure 8: XACML reference architecture

3.1.2 NIST Guide to ABAC: Definitions and Considerations

The National Institute of Standards and Technology (NIST) has published a guide [11] that defines

ABAC mechanisms, as well as, considerations to be taken into account. The purpose and scope of the

document, along with its target audience, are outlined. Notes on terminology used are provided as

well. An Access Control Mechanism (ACM) is defined as “the logical component that serves to

receive the access request from the subject, to decide and to enforce the access decision” [11]. The US

Department of Defense (DoD) mandated the development of logical access control mechanisms in the

1960s and the 1970s resulting to the emergence of Discretionary Access Control (DAC) and

Mandatory Access Control (MAC). The growth of network infrastructure led to the development of

identity based access control capabilities (IBAC) that employ access control lists (ACLs) in order to

capture the identities of users having access to objects.

Next, RBAC systems [12] emerged by “employing pre-defined roles that carry a specific set of

privileges associated with them and to which subjects are assigned”. Both ACLs and RBAC can be

considered as special cases of ABAC model since ACLs are associated with the attribute of “identity”

and RBACs with the identity of “role” [13]. The main characteristic of ABAC is the use of policies

for the evaluation of a complex Boolean rule set. As mentioned above, XACML is an access control

mechanism consistent with ABAC. In XACML, elements, such as rules, policies, rule and policy

combining algorithms, attributes (subject, object/resource, action and environment conditions),

obligations and advice, are employed. Figure 9 presents a basic ABAC scenario with all the relevant

entities, i.e. subject(s) and object(s) with their attributes, access control mechanisms and policies, as

well as, environment conditions.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 22

Figure 9: Basic ABAC scenario

Figure 10 presents the core ABAC mechanism. A request event leads to the evaluation of Attributes

and Access Control Rules by the control mechanism and a control decision takes place. Boolean

combinations of attributes and conditions, as well as, relations associating subject and object attributes

and allowable operations are used.

Figure 10: Core ABAC mechanisms

An enterprise is defined as a collaboration or federation among entities for which information sharing

is required and managed [6]. Figure 11 presents such a scenario.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 23

Figure 11: Enterprise ABAC Scenario Example

Natural Language Processes (NLPs), Digital Policies (DPs), Meta-policies (MP) and Meta-attributes

are all utilized in a specific way for the realization of an enterprise ABAC solution. Figure 12 presents

an example of Access Control Mechanism (ACM) functional points.

Figure 12: An example of ACM functional points

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 24

Table 4: ABAC policies and their role

Policy Decision Point

(PDP)

Computes access decisions by evaluating the applicable DPs and MPs.

One of the main functions of the PDP is to mediate or deconflict DPs

according to MPs.

Policy Enforcement

Point (PEP)

Enforces policy decisions in response to a request from a subject

requesting access to a protected object; the access control decisions are

made by the PDP.

Policy Information

Point (PIP)

Serves as the retrieval source of attributes, or the data required for

policy evaluation to provide the information needed by the PDP to

make the decisions.

Policy Administration

Point (PEP)

Provides a user interface for creating, managing, testing, and debugging

DPs and MPs and storing these policies in the appropriate repository

Figure 13 presents the ACM NIST System Development Life Cycle (SDLC). Each phase is further

elaborated in the document. In the Initiation Phase, the following considerations are accounted for:

 Building the business case for deploying ABAC capabilities

 Scalability, feasibility, and performance requirements:

o Development and maintenance cost

o Cost of transition to ABAC

o Need to review privilege and monitor authorizations

o Understanding object protection requirements

o Enterprise governance and control

 Developing operational requirements and architecture:

o Object identification and policy assignment

o Attribute architecture

o Subject attributes

o Object attributes

o Environment condition

o Access control rules

o Access control mechanism and context handling

Figure 13: ACM NIST System Development Life Cycle

In this phase, the ACL trust chain and ABAC trust chain are defined. Both are presented in Figure 14

and Figure 15 below.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 25

Figure 14: ACL Trust Chain

Figure 15: ABAC Trust Chain

In the Acquisition/Development Phase, the following considerations are accounted for:

 Business process generation and deployment preparation:

o Documentation of rules

o Customizing policy

o Agreement and understanding of attributes

o Understanding meaning of attributes

o Processes and procedures for access failures

o Attribute privacy considerations

o Digital policy creation and maintenance

 System development and solution acquisition considerations:

o Standardization and interoperability within the enterprise

o Identity management integration

o Support of NPEs (Non-person entities)

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 26

o Authentication and data integrity between ABAC components

o Integrating other controls with ABAC

o Selection and accessibility of attribute sources

o A shared repository for subject attributes

o Minimum attribute assignments

o Environment conditions

o Attribute management

o NLP/DP traceability

o Rules or Policies based on the agreed attributes

o Externalization of policy decision services

 Considerations for other enterprise ABAC capabilities:

o Confidence in access control decisions

o Mapping attributes between organizations

In the Implementation/Assessment Phase, the following considerations are accounted for:

 Attribute caching

 Attribute source minimization

 Interface specifications

In the Operations/Maintenance Phase, the following considerations are accounted for:

 Availability of quality data

3.1.3 Next Generation Access Control (NGAC)

The Next Generation Access Control (NGAC) mechanism [14]-[15] is a fundamentally different

approach than XACML in terms of representing requests, defining and managing policies, attributes,

as well as, computing and enforcing decisions. The terms user, operation and object are used instead

of subject, action, and resource in XACML. Object attributes are used in a similar manner as in

XACML. For subject attributes, NGAC uses containers that represent roles, affiliations and other

common characteristics relevant to policies, e.g., security clearances.

In NGAC, policies are expressed through configurations of relations of four types: assignments (define

membership in containers), associations (to derive privileges), prohibitions (to derive exceptions), and

obligations (to dynamically alter access state). Figure 16 presents two examples with assignment and

association graphs in NGAC. Tuples are used for assignment specification.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 27

Figure 16: Assignment and Association Graphs in NGAC

In NGAC, three types of prohibition relations are included, i.e., user-deny, attribute-deny, process-

deny. Obligations are exclusively used for the creation of process-deny relations. They consist of a

pair of an event pattern and a response. If event pattern conditions are met, then responses are

executed. NGAC decision functions control accesses in terms of processes. Other aspects such as

Delegation, NGAC Administrative Commands and Routines, and Arbitrary Data Service Operations

are elaborated as well. Figure 17 presents the NGAC standard functional architecture. The chain of

events that take place when an application (a request for accessing content) is initiated is presented.

Figure 17: NGAC Standard Functional Architecture

3.2 Role-Based Access Control (RBAC)

One of the access mechanisms that is well-described in the literature is the Role-Based Access Control

(RBAC) mechanism. It originated back in the 1970’s for the needs of multi-user, multi-application

systems. This technique is based on the concept of roles and groups of users to whom these roles are

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 28

assigned. The roles are representing various tasks to be performed and the users are associated with

permissions to the tasks, as well as, constraints with respect to the access to these roles (tasks). The

permissions to roles can change and user groups can change as well. It is considered hard to assign

permissions to users without the RBAC mechanism. A role represents a gathering of users on one side,

whereas on the other it shows a gathering of permissions.

RBAC encloses in an access control model the concepts of roles, hierarchies, role activation,

constraints on user/role membership and role set activation. RBAC posits a good solution when

simplification of security policy administration is sought. It is a technique that experiences an increase

in the number of vendors that offer its features.

In RBAC [16], there are four types of components which are presented and the functional

specifications for each one of them is given. The RBAC features that are described represent a stable

set of RBAC features and a variety of products entail these features. These features fall into three

categories, i.e., administrative operations, administrative reviews, system level functionality. In order

to identify such features, a sponsored market analysis has been conducted by NIST. In [17], the

reference models of RBAC are presented, which correspond to the components introduced in [16].

RBAC has also been discussed in order to produce a standard. For this there have been panel sessions

during the 2000 ACM Workshop on Role-Based Access Control. Related to standards, it should also

be mentioned here that the concept of roles, as they are used in RBAC is used in the SQL3 standard

for database management systems, which is based on their implementation in Oracle 7.

3.2.1 RBAC Divisions

RBAC is falsely considered as a single access control and authorization model. In reality, it consists of

several models, which are suitable for different security management applications.

RBAC entails a family of three models. The RBAC core is the basic model that is needed in order to

have the RBAC mechanism. The other two models are built on top of the core model and referred to as

hierarchical RBAC and constrained RBAC. Hierarchical RBAC introduces the concept of hierarchies,

meaning that permissions can be inherited between different roles. Constrained RBAC adds the notion

of constraints, meaning that there are restrictions among its defined components, as well as,

restrictions regarding the permissions given to the user. In the following subsections, we provide a

brief overview of these models.

3.2.1.1 RBAC Core

This model encompasses the basic concepts of RBAC. On the one hand, users on one hand and

permissions are assigned to roles. On the other hand, users acquire permissions when they are

members of roles. Users and roles should be defined carefully. Activation and deactivation of roles

can be done selectively, through the concept of user sessions. The characteristics of group-based

access control apply in general lines for the base model of RBAC. Excluding specific features is an

important issue in core RBAC [17]. We stress that RBAC core is the building block for all the

previously cited versions of RBAC. Figure 18 illustrates how the elements of RBAC core are

interconnected.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 29

Figure 18: RBAC core elements and their interconnections.

The arrows in Figure 18 entail that multiple roles can be assigned to one user and vice versa; the same

goes for permissions and role assignments. Permissions are exercised by users. The session stands for

the assignment of many roles to one user, i.e., a user sets a session where some of the roles are

activated from the total set of roles that this user is assigned to.

Regarding the functional specifications of RBAC core, the functions needed to be dealt with are:

administrative functions, supporting system functions and review functions. Administrative functions

revolve around the creation of element sets. For instance, users and roles are created and deleted by

the administrator, whereas the administrator is responsible for setting the relationships between roles,

operations and objects. The main relationships to be defined are role-to-user and role-to-permission.

Supporting system functions revolve around session creation and deletion. The review functions

provide the necessary interfaces to review the results of the actions created by the administrative

functions.

3.2.1.2 Hierarchical RBAC:

The main difference of hierarchical RBAC from RBAC core is that it introduces role hierarchies.

There is a relation between roles according to which senior roles acquire the permissions of junior

roles, whereas junior roles acquire user membership of seniors. Hierarchical RBAC is partitioned into

two categories (i.e., general and limited). According to the former one, multi-layer inheritance of

permissions and user membership of intermediary roles is allowed. The latter scheme implies that

restrictions are set on the role hierarchy; (inverted) tree-like structures are supported. In this technique,

multiple inheritances are usually not supported, whereas roles are limited to one immediate actor/ user

lower in the hierarchy [17].

This model can be efficient when it comes to general-permission attributes. For instance, in cases

where several general permissions are assigned to a large number of users, it is considered more

effective not to assign general permissions repeatedly. Moreover, common permissions can be

attributed to users belonging to different roles. In hierarchical RBAC, a user can set a session with the

roles that are considered junior in hierarchy regarding the roles that the user is a member of.

Actors/users higher in the hierarchy can inherit role permissions from users in lower levels of the

hierarchy, whereas user membership is passed in a top-down approach. Figure 19 illustrates how

elements interact with each other in this model and how role hierarchies can be designed for a project.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 30

Figure 19: Hierarchical RBAC – Elements and their interconnection

The functional specifications of hierarchical RBAC are: hierarchical administrative functions,

supporting system functions and review functions. The first category includes all the administrative

functions necessary for the RBAC core model. The functions that differentiate this model from RBAC

core are the ones to create or delete inheritance relationships between existing roles. Thus, establishing

or removing a new inheritance relationship between existing roles and creating a new role and setting

it for a user/ actor in the hierarchy are part of the administrative functions of this model. Regarding the

supporting system functions, this model employs the same functions as those of RBAC core.

However, when creating a session or when setting a new role, special attention should be payed as to

whether roles are automatically activated or should be activated in an explicit way. As in the other

function categories, the review functions for RBAC entail the functions of RBAC core. In addition,

however, the set of users that are attributed a specific role is defined along with the roles that inherited

this specific role. The set of roles assigned to a given user is defined along with the roles that were

inherited by this set of roles.

3.2.1.3 Constrained RBAC:

Constrained RBAC revolves around the separation of duties pertaining to an RBAC model. For

instance, it is likely that the same person will not be allowed to have access to two different roles;

therefore, separation of duties is enforced. Constraints can be applied to user and role functions. For

instance, a limitation could be that a role has a maximum number of users. For constrained RBAC,

two subcategories can be defined [17]:

1) static separation of duty relations and,

2) dynamic separation of duty relations.

The static separation of duty relations has to do with imposing constraints on the attribution of users to

roles (Figure 20). An example can be the definition of non-connected user assignments linked to sets

of roles. According to this model, the restrictions are posed on roles and in defining user assignment

relations. A user cannot be assigned to two different roles. Figure 21 illustrates how different elements

interact within this model.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 31

 (a) (b)

 (c)

Figure 20: Role hierarchies for a project: a) Role hierarchy, b) Administrative Role Hierarchy

and, c) Private and Scoped Roles

Dynamic separation of duty relations aims to decrease the permissions that are assigned to a user. This

model, defines constraints on the roles that can be activated within a user session. Permissions can be

allowed only for a limited amount of time needed to accomplish a specific duty. This model enables

the user to be assigned two different roles as long as these roles do not create conflict of interest when

acted independently. Thus, this model imposes limitations on the roles of a user during a session.

Figure 22 illustrates how different elements interact within this RBAC model.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 32

Figure 21: Static Separation of Duty relations, Constrained RBAC – elements and their

interconnection.

Figure 22: Dynamic Separation of Duty relations, Constrained RBAC – elements and their

interconnection

3.3 Access Control Schemes: Considerations

Up to this point, we have presented a summary of the characteristics of the two main access control

paradigms that are based either on the attributes of an entity (ABAC), or, its assigned roles (RBAC).

Table 5 provides a summary of the advantages and disadvantages of each approach.

Table 5: RBAC vs ABAC characteristics

Characteristic RBAC ABAC

Flexibility √

(for small and medium-sized organizations)

√

Scalability - √

Simplicity Easy to establish roles and permissions for a small

company, hard to maintain the system for a big

Hard to establish all the

policies at the start, easy to

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 33

company maintain and support

Support for

simple rules

√ √

Support for

complex rules

√ √

Support for rules

with dynamic

parameters

- √

Customizing

user permissions

Customization entails the creation of new roles √

Granularity Low High

Thus, from Table 5, we can deduce that the RBAC Access control policy does not suit the needs of

DELTA. Indeed, RBAC is more suitable for small and medium scale organizations. Furthermore, its

design process revolves around the notion of assigning the same access credentials to a group of users

that share the same role. In DELTA’s case, this would entail that, e.g., all FEIDs would have the same

credentials and access to the same set of resources. Clearly, this would violate end-customer privacy

and would not account for cases where, e.g., a FEID is uniquely assigned to a particular DVN.

The ABAC access policy also has its own limitations which, however, can be mitigated or even

completely circumvented by carefully assigning attributes to entities/actors and by meticulously

drafting the access control policies of the DELTA’s exposed interfaces. Thus, DELTA will follow the

ABAC approach. A concrete specification of the ABAC policies for all the interfaces exposed by the

FEIDs, the DVNs and the DELTA Aggregator will be provided in D5.3. In this deliverable, we

provide details in regards to access control revolving around DELTA’s blockchain, in order to

facilitate the works related to T5.2.

3.4 DELTA Blockchain: Access Control

The blockchain infrastructure is one of the most important subsystems in the DELTA platform as it

facilitates the secure, fast and automatic deployment and settlement of various DR schemes between

the Aggregator and customers. Strict access policy rules have to be in place for defining which subset

of identities of the system can access each one of the distinct services provided by DELTA’s

blockchain network. The main entities interfacing with the DELTA blockchain are the Aggregator, the

DVNs and the FEIDs. These entities are going to interact with smart contracts.

The DELTA blockchain will be developed on the Hyperledger Fabric platform (HLF)
1
. In HLF,

networks are maintained and used by multiple organizations. Each organization participates in the

system by providing at least one peer (blockchain node) and one CA that manages the identities of

those related to the organization. Apart from the peers, an organization can allow its users to interact

with smart contracts through client apps. In any case, every actor interacting with the blockchain

infrastructure is required to be identified (through its organization’s CA) in order to then apply

specific predefined access rules regarding this interaction.

In HLF there is a basic notion, referred to as channel, which practically stands for a blockchain

instance. In a single HLF network more than one channel may be concurrently active and each one of

those is accessed by a defined subset of actors of the global network. In each one of these channels,

one or more smart contracts are deployed. Smart contracts in an HLF environment implement the

business logic of the applications to be served by the HLF network. In addition, HLF provides a set of

system configuration smart contracts, which mainly define the rules for operating each individual

channel, such as who can deploy smart contracts, who can commit transactions, or how those are

validated. Specifically, there are multiple different system chaincodes:

1 https://www.hyperledger.org/projects/fabric

https://www.hyperledger.org/projects/fabric

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 34

 Configuration system chaincode (CSCC): Runs on all peers and handles changes to a

channel’s configuration, such as a policy update.

 Query system chaincode (QSCC): Runs on all peers and exposes ledger APIs which include

block query, transaction query etc.

 Endorsement system chaincode (ESCC): Runs in endorsing peers to cryptographically sign

a transaction response.

 Validation system chaincode (VSCC): Validates a transaction, including checking

endorsement policy and read-write set versioning.

3.4.1 Network Level Access Control

The main resources of a HLF network are (system) smart contracts and the event stream source, which

may be triggered by smart contracts as their state changes. HLF applies explicit access control for all

these upon two different policy configurations. Signature Policies identify specific users who must

provide their signature in order for a policy to be satisfied. These policies can be composed by

chaining logical predicates (AND, OR), or even arithmetic expressions, such as a minimum number of

actors of a specific role. Implicit Meta Policies can combine simpler Signature policies. These

policies use a simple syntax that takes as input simpler policies (e.g., <ALL|ANY|MAJORITY>

<sub_policy>)

According to the aforementioned policy syntax, a specific plan regarding the decision to allow to a

specific actor to initiate a specific action can be set up. Specifically for DELTA, this level of access

control could provide the basis to develop rules, such as:

 Only the Aggregator can deploy a smart contract related to a DR event that involves, e.g., the

Aggregator and one or more DVNs.

 Only a DVN can instantiate a chaincode that relates to the settlement of a DR scheme between

a DVN and a FEID.

 A transaction can only be validated if at least one Aggregator peer endorses it.

3.4.2 Smart Contract Level Access Control

Apart from the access control defined in the previous section, an additional access control layer of

higher granularity resides inside the smart contracts that will define the business logic of the

applications. More specifically, when a smart contract is invoked, it is possible to check the identity of

the caller and use this information to decide on the workflow to be followed. The Client Identity

Chaincode (CID) library of HLF enables the retrieval of the identity of the invoking party. The

client’s identity can be checked with respect to its organization’s Membership Service Provider

(MSP), in addition to specific attributes of the client, which are embedded in its certificate and can

also be retrieved and used to take access control decisions.

In DELTA’s context, by employing the CID library, different access rules can be set up, such as:

 Only the FEIDs that have been defined in the smart contract by the DVN to take part into a

DR scheme can invoke the function through which they accept to participate.

 Only the FEIDs that participate in a DR scheme can report corresponding measurement values

to the FEID.

 Only the Aggregator can invoke the function that finalizes a DR scheme and adds bonus

points to the end-user accounts.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 35

As it has been illustrated, the DELTA blockchain implementation is going to employ two levels of

access control (network level and smart contract level). As the design and implementation of

blockchain functionality is currently pending, currently there is no concrete access control scheme in

place. Explicit rules are going to be defined in order to decide at each point in the workflow if an

identity is able or not to interact with the DELTA blockchain. These rules are going to make up a

concrete DELTA blockchain access control policy that will be strongly coupled and compatible with

the access control policy that has been described for the rest of the DELTA system. The blockchain

access control policy, along with the technical mechanisms, that are going to be employed, in order to

implement it, are going to be described in more detail in D5.2.

3.5 Privacy

Privacy is a fundamental right established by much domestic legislation in contemporary societies.

The concept of privacy has altered over time, driven mainly by the impact of new technologies.

Concerning privacy in the DELTA project, the goal is to protect the privacy of individual customers,

as well as, the Aggregator. In the following, we illustrate our approach in guaranteeing privacy within

the DELTA platform.

The project’s requirements, as documented in WP1, mandate that each individual customer does not

have access to data related to other customers. This includes data that may either directly or indirectly

identify another customer, as well as, data pertaining to the measurements reported by FEIDs that are

installed at the premises of customers. As defined in DELTA’s architecture, FEIDs do not

communicate with each other. Thus, there is no direct transmission of data between FEIDs that can be

used to identify customers or violate their privacy. Furthermore, customers have severely limited

access to the capabilities of their FEIDs, e.g., they do not have the means to change the FEIDs

configuration, apart from schedules revolving to DR events. Moreover, FEIDs are equipped with

various hardware security features that strengthen even more their security properties.

FEIDs exchange data and communicate with DVNs using DELTA’s P2P network. The architecture of

DELTA’s P2P network emphasizes on privacy and anonymity, ensuring that the data exchanged is

hidden from eavesdroppers and spoofers and that the customers’ personal data is secured during

transmission. We stress that the Aggregator has access to its customers’ personal/private data through

DVNs, because both sides have signed an appropriate contract, i.e., the customer has provided his

consent with a real-world contractual agreement and, thus, privacy his is not violated. Although

Aggregators have full access to customers’ personal data, other entities, such as the DSO, the TSO or

other BRPs, cannot access such information. In cases were such parties need to process customer data,

the customer’s consent will be requested and once and if it is provided, the requested data will be

provided to these parties by the Aggregator’s infrastructure.

Lastly, it is imperative that customers do not have access to data that are relevant to the Aggregator’s

operations. Recall that customers, via their FEIDs or their mobile app, do not, in any way, pull data

from the services of the Aggregator, or even the DVNs to which they are assigned to, that may leak

any information in regards to the internals of the Aggregator’s operations. Thus, the privacy of the

Aggregator’s business logic is also preserved.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 36

4. Auxiliary Security Infrastructures

The time synchronization process is essential in the development of systems that involve the

interaction of multiple components that are distributed over an asynchronous networking

infrastructure, such as the Internet. Due to monetary costs or geographical problems (e.g., large

distances), it is not always possible to adopt dedicated hardware-based solutions to guarantee clock

synchronization. For such cases and others, timing protocols have been developed that mange to

overcome the aforementioned limitations.

In DELTA, stemming from its DR-oriented functionalities, as well as, the non-negligible distance that

separates the assets that are part of the Aggregator’s portfolio, clock synchronization services are, not

only relevant, but mandated to, e.g., guarantee the correctness of the certificates generated/revoked by

the Aggregator’s CA.

There are a couple of different temporal synchronization protocols where each has its own unique

characteristics in terms of performance and, more importantly, security properties. Here, we analyze

the most widely deployed temporal synchronization protocols, illustrate their induced safety risks and

present our choice for DELTA.

4.1 NTP

The Network Time Protocol (NTP) is used to synchronize the clocks of components over the Internet.

The first edition of the NTP protocol was published in RFC958 in 1988 [18], while it’s the latest

version, NTPV4, was updated in 2010 [19]. The NTP subnet model includes several widely accessible

primary time servers, which are synchronized with each other. The NTP protocol conveys timekeeping

information from these primary servers to secondary time servers and clients. NTP has a hierarchical

structure divided into 16 levels or strata in which the first stratum, stratum zero, provides a high-

precision time source. Clients can query a specific stratum depending on the timing precision required.

Figure 23: An NTP Application Example with 4 Stratums

An NTP primary server is synchronized to a reference clock directly related to the UTC time zone

(Figure 23). A client synchronizes to one or more upstream servers, but does not provide

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 37

synchronization to dependent clients. A secondary server has one or more upstream servers and one or

more downstream servers or clients. In order to maintain stability in large NTP subnets, secondary

servers should be fully NTPv4-compliant.

4.1.1 Security Considerations

NTP has been extended multiple times to enhance its security properties. It supports both symmetric

and asymmetric cryptographic primitives for authentication. However, support for these mechanisms

is varies highly as implementations do not provide these extensions in a consistent manner. An NTP

client can claim to have a validly synchronized clock to dependent applications only if all servers on

the path to the primary servers are properly authenticated. This implies that each NTP server

authenticates to lower stratum server, a process which is assumed to be performed recursively.

We stress that NTP authentication does not imply that the conveyed timing information is correct. The

NTP protocol specification takes into account attacks, such as false injection NTP packets, clogging of

the network, Denial-of-Service (DoS), replay attacks and others. We provide a quick overview of the

defense mechanisms suggested by the NTP specification.

The on-wire timestamp exchange scheme is inherently resistant to spoofing, packet-loss, and replay

attacks. The engineered clock filter, selection and clustering algorithms are designed to defend against

evil cliques of Byzantine actors. While not necessarily designed to defend against persistent intruders,

these algorithms and their accompanying sanity checks, have functioned well over the years to.

However, these mechanisms do not securely identify and authenticate servers to clients. Furthermore,

NTP appears to be susceptible to wiretap-like attacks, interception attacks, NTP packet storage and

resource saturation attacks. RFC 7384 [20] defines a set of security requirements for timing protocols,

focusing on the PTP (Precision Time Protocol) and the NTP (Network Time Protocol). Furthermore, it

discusses security impacts of timing protocols, the performance implications of external security

practices and the dependencies between other security services and clock synchronization.

4.2 PTP

PTP, which was originally, defined the IEEE 1588 standard [21], is a packet-based technology that

enables the operator to deliver synchronization services on packet-based mobile networks. Version 2

of the protocol was released on 2008 and provides a highly precise protocol for time synchronization

that synchronizes clocks in a distributed system, which communicates through Ethernet networks.

Depending on the requirements, PTP can not only perform time synchronization, but can also deliver

phase and frequency synchronization among devices that are connected to the same time source. Time

synchronization is achieved through packets that are transmitted and received in a session between a

master and a slave clock.

PTP is an application layer protocol provides that employs UDP/IP as its transport layer. PTP operates

in a hierarchical manner, where the node that has the most precise clock becomes the time source

master. Hence, PTP, instead of establishing a rigid hierarchy of timing information propagation across

its multiple layers, tends to have a more dynamic organization where dedicated operational processes

elect the most reliable node as the time source master. PTP provides an algorithm that calculates the

time difference between nodes and updates the clocks of slave nodes to that of the master node. The

time synchronization mechanism works as follows:

1. Transmit are transmitted over the Ethernet network.

2. The transmission and receipt time are recorded.

3. Calculate the time difference.

4. Adjust the slave’s clock to match that of the master.

5. Repeat this process periodically.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 38

The system clocks can be categorized based on the role of the node in the network. They are broadly

categorized into ordinary and boundary clocks. The master and slave clocks are ordinary clocks. The

boundary clock can operate as either a master or a slave clock. In the following, we elaborate on the

clock categories.

Master clock — The master clock transmits messages to the PTP clients. This allows the clients to

establish their relative time distance and offset from the master clock, which acts as a reference point.

Messages are delivered to the clients either via unicast, or multicast over Ethernet or UDP/IP.

Slave clock — The slave clock performs clock and time recovery operations based on the received

and requested timestamps from the master clock.

Boundary clock — The boundary clock operates as a combination of master and slave clocks. The

boundary clock endpoint acts as a slave clock to the master clock and as a master to all the slaves

reporting to the boundary endpoint.

The temporal precision that can be obtained through PTP is closely tied to its implementation. Table 6

provides concise descriptions of the four different implementation of PTP, which range from pure

software to pure hardware implementations.

Approach Development Consideration Precision Performance

Software only Requires software development Lowest precision > 10

microseconds on a single

link

Hardware assisted on

FPGA

Requires significant hardware and software

investments. FPGA development required

Typical > 30 nanoseconds

on single link

Hardware assisted in

Microcontroller

Requires changes to the microcontroller,

Existing software application may need to be

customized

Typical > 30 nanoseconds

on single link

Hardware assisted in

Ethernet PHY

(available on DP83640)

Simple hardware implementation that

involves software customization. Provide the

tightest time synchronization available.

Typical < 30 nanoseconds

on single link

Table 6: Allowed PTP implementations and relative performances

The PTP software stack resides at application layer. As a result, PTP packets can be affected by delays

while traversing the hierarchy, i.e., from Ethernet PHY to the OS. Pure PTP software implementations

provide the least precise timing synchronization, which is acceptable for applications that do not

require accuracy in the order of nanoseconds (performance comparable to NTP).

In contrast, PTP configurations that require hardware components handle clock timestamps at the

hardware level, which limits, to a minimum, the amount of incurred delays. A time signal source

originates either from a local oscillator (e.g., rubidium gas oscillator), or from a trusted source that acts

as leader in the network. The grandmaster clock, as illustrated in Figure 24, creates a master/slave

hierarchy of clocks in the network, using a time signal that originates from a GPS antenna.

All of the packets sent by the grandmaster clock traverse the switch and arrive at ordinary clocks.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 39

Figure 24: Simplified PTP communication/sync scheme

4.2.1 Security Considerations

PTP was originally published in 2002 and it mainly focused on precise synchronization for

instrumentation, industrial automation and military applications. The second version was finalized in

2008 [21] and introduced additional use cases, such as telecom and enterprise environments. While the

first version of PTP contained no security mechanisms, the second version contained an experimental

annex (Annex K). Annex K specifies a security solution that provides group source authentication,

message integrity and replay attack protection. However, Annex K is neither well adopted nor

implemented. Its security features can be summarized as follows:

1. Provides:

a. Group source authentication.

b. Message integrity.

c. Replay attack protection.

1. Does not provide:

a. Non-repudiation.

b. Data confidentiality.

PTP’s secure implementation involves an integrity protection mechanism, which uses a message

authentication code to verify that a received message was transmitted by an authenticated source, was

not modified in transit and is fresh. Replay protection is implemented via a simple counter-based

scheme. Furthermore, a challenge-response mechanism is used to affirm the authenticity of new

sources and to maintain the freshness of trust relations.

4.3 RFC 3161 – Timestamp Authority

A timestamp authority (TSA) is an entity whose main function is to associate arbitrary data with a

particular time source. This trusted third-party certifies the existence of data at specific time points

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 40

while also certifying the authenticity of data [22]. TSAs employ PKIs and an overview of the

timestamping procedure is as follows:

1. The client application creates a cryptographic hash of the data, which acts as a unique

identifier of the data, and sends it to the TSA.

2. The TSA combines this hash with other relevant metadata information, such as the

authoritative time. The result is digitally signed with the TSA’s private key, creating a

timestamp token which is sent back to the client. The timestamp token contains the

information required by a client application to verify the timestamp of the data.

3. The timestamp token is received by the client application and appended to the actual data.

The client application uses the TSA’s public key to authenticate the TSA (i.e., validate that the

timestamp came from a trusted TSA) and re-calculate a hash of the original data. This new hash is

compared to the originally created hash (Step 1). If any changes have been made to the data since the

timestamp was generated, this hash check will fail, indicating that the data has been tampered with

and, thus, it should not be trusted.

Figure 25: TSA timestamping procedure

The following requirements and assumptions are applicable in this setting regarding the TSA:

1. A trustworthy and accurate source of time is employed.

2. A unique integer is incorporated to each newly generated timestamp token.

3. A timestamp token is produced only upon receiving a valid request.

4. A unique identifier that indicates the security policy under which the token was generated is

included in the token.

5. A collision resistant hash function is employed to generate a digest of the signed data.

6. The entity requesting the timestamp should not be identifiable by the timestamp token.

However, the standard does not specify the security requirements, nor the procedures required to

ensure the safety of the TSA. RFC 3161 [22] does not mandate a specific transport mechanism for the

transmission of TSA messages. Instead, it provides a description of the payload’s structure for a

variety transport protocols, which we enlist below:

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 41

1. SMTP.

2. FTP.

3. Socket-based protocol.

4. HTTP.

As we have already illustrated, timestamps in DELTA are necessary. However, developing and testing

a timestamping service that requires dedicated hardware and software for its functionality is out of the

project’s scope. Typically, the TSA service is offered to third-party applicants as a service. However,

in DELTA, we advise against third party services that may have detrimental impact on the platform’s

security.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 42

5. DELTA Peer-to-Peer Network: Architecture & Security

A peer-to-peer (P2P) network allows the direct exchange of information between the nodes comprise

the network using arbitrary data formats. According to their degree of centralization, P2P networks

can be classified as follows:

 Centralized; All information exchange is done through a single, centralized server. This type

of network is limited in terms of user privacy and scalability. The P2P server constitutes a

single point of failure and has high bandwidth requirements.

 Distributed; This is the most common approach where nodes act both as clients and servers,

thus, there is no central server that handles network connections. All involved

communications are point-to-point between nodes and other nodes of the network offer their

link to facilitate message relay. This approach is scalable, does not introduce a single point of

failure and bandwidth requirements are distributed over all nodes of the network. The level of

privacy that they offer depends on the peculiarities of the deployment.

 Hybrid; This approach, much like the centralized one, employs one or more centralized

servers that, however, collectively manage network resources and, via standard redundancy

techniques, do no introduce a single point of failure. Thus, the network is operational even in

the presence of server failures. This approach combines the benefits of both decentralized and

centralized networks.

In the DELTA platform, a Hybrid P2P network has been implemented, since P2P is one of the

OpenADR 2.0b requirements for the data exchange. The DELTA P2P network has the following

features:

 Scalability and decentralization; in the P2P network, brokers (servers) and nodes (clients)

can be added, as the system requires. This feature allows including servers that will behave as

just one, i.e., transparently for the nodes, at the same time that the number of clients grows.

The growth of the servers prevents the network to be flooded with the data exchange among

clients, and at the same time, the possibility of adding more servers allows to include an

undefined number of clients. Thanks to this scalability and decentralization, a single point of

failure is avoided, and clustering allows the broker to scale with more brokers, so the

information is distributed among all brokers.

 Privacy: to protect the privacy of the data that is stored on the broker, data needs to be

encrypted. This feature allows customers’ data not to be read by unauthorized devices. In the

case of a computer attack, this information would remain secure, since by encrypting private

data, a hacker would have more difficult access to such data.

 Authentication; to prevent and avoid possible malicious nodes, nodes cannot be anonymous.

Establishing an identity verification makes it more difficult for an unauthorized person to

access a device. With certificates, impersonation is even more difficult, so information theft

will be avoided with this feature, helping to comply with security and privacy measures.

Figure 26: P2P network classification and node interconnections.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 43

From a technological point of view, the DELTA platform uses an OpenFire [23] server as

communication broker. This server keeps record of all the users that can join the network, and is the

authority that enables or disables nodes to exchange data. The OpenFire server is not a centralised

authority since, as we will explain later, it was designed to work with several deployments. In other

words, several OpenFire brokers can be deployed and behave as just one providing fault tolerance

mechanisms, scalability in the number of nodes that can join their P2P network, and decentralization

in the deployment.

5.1 OpenFire

OpenFire is a cross-platform real-time collaboration server based on the XMPP protocol. This protocol

is the leading open standard for real-time messaging, in fact it is one of the most used in real-world

applications, for instance, it has been used for private chatrooms in gaming applications for platforms

such as Origin, PlayStation, etc.

5.1.1 Configuration

The OpenFire server has to be configured with a XMPP domain name (each node in the cluster must

have the same XMPP domain name), the server host domain (each node in the cluster must have a

unique server host domain), the admin console port (http web-based admin console), the secure admin

console port (SSL web-based admin console), the encryption type (blowfish or AES, blowfish is faster

and AES is more secure) and a custom encryption key (for additional security).

The OpenFire server enables the login of clients in the network, as well as, some other features for the

client. Allowing such features requires OpenFire to store data, for which two types of databases are

available in the OpenFire configuration: an external database (MySQL, PostgreSQL, or Microsoft

SQL server), or an embedded database. Regarding the profile settings, a directory server (LDAP) can

be deployed for store users and groups or store them in the server database (allowing hashed

passwords). Finally, in the last step of the configuration, we must configure an admin email address,

which will be a username, and the password. This administrator user will have permissions to

configure the entire system, add new users, add certificate authorities, add new administrators, etc.

5.1.2 Setup

In this section, a best-practices overview to define the optimal setup options for the DELTA project is

provided, bearing in mind the security requirements that OpenADR establishes and others decided in

the consortium.

5.1.2.1 Scalability & decentralization

The scalability is one of the bottlenecks of the systems that accept new clients in their networks. With

OpenFire this issue is solved by allowing one broker join a cluster of other brokers of the same nature.

This cluster behaves as one for the clients, but leverages all the communications and data exchange by

distributing the loads among them. For a broker to join an existing cluster, the domain name and

subdomain must be placed in the install configuration. The communication process between server-to-

server have two types of connections, the plain-text connection (using the STARTTLS protocol) port

is the 5269, and the encrypted connections (as opposed to using STARTTLS) use the 5270 port. The

client connections have two types of connections too, the plain-text connection (using the STARTTLS

protocol) use port is the 5222, and the encrypted connections (as opposed to using STARTTLS) use

the 5223 port.

The difference between the plain text connection and the encrypted connection is to use or not

STARTTLS, which offers a way to improve a plain text connection to an encrypted connection instead

of using a different port, so you can use any of the two connections

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 44

For decentralization, OpenFire have the function “Clustering”. This option can only be activated if a

database is not embedded, since such database will established the grounded knowledge shared among

all the brokers, and installing the plugin “Hazelcast Plugin”. Following an insight for the setup is

provided:

Figure 27 OpenFire “Clustering” function

5.1.3 Privacy

In the connections client-to-client and server-to-server, the encryption protocol must be aligned with

the OpenADR standard. This forces the DELTA OpenFire server require the use of TLSv1.2 or

superior. OpenFire allows the use of several TLS, one of them being TLSv1.2, to configure that only

this type of TLS is used, in the advanced configuration of Plain-text connections and encrypted

connections, both in connections client-to-client and server-to-server, it must only permit TLSv1.2 or

superior.

Figure 28 OpenFire Encryption Protocols

For the encryption cipher suites, based on the requirements of OpenFire, the following options must be

selected, depending on the system requirements:

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 45

 ECC - TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

 RSA - TLS_RSA_WITH_AES_128_CBC_SHA256

5.1.4 Authentication

The OpenFire allows the brokers to have control over who joins the P2P network. The brokers are the

ones responsible of creating new credentials for those clients that are joining the P2p network. The

anonymous connections are supported by OpenFire, nevertheless in the DELTA platform are

discarded for two reasons, i.e., OpenADR does not support anonymous connections and the

consortium of DELTA considers that it would turn in a weakness of the system not knowing who is

creating traffic (bear in mind the nature of the data in DELTA).

Figure 29 OpenFire Authentication Functions

OpenFire uses the well-known jabber identification system. Users have a username, a name, an email

and a password, and can be an administrator (grants admin access to OpenFire). The username and

email are unique and help to allow the login to the system, with its corresponding password. All this,

together with the name, can identify users in the system. Authentication in OpenFire can also be

shielded by using certificates, which will be discussed in a future section.

5.1.5 Fault Tolerance: XMPP Server Redundancy

Fault tolerance is the property that allows a system to continue to function properly in case of failure

of one or more devices. In a hybrid P2P network, we will need more than one server to avoid failures,

this problem is solved by adding more brokers (servers) what is called clustering. In addition, we find

another point of failure, which is that OpenFire allows multiple logins with the same account, so this

functionality conflicts with the operation of DELTA and must be corrected.

5.1.5.1 Computer cluster

The term cluster is applied to a set of servers linked together and that behave as if they were a single

server, controlled by specific software. The benefit of computer clustering is that it allows that overall

system keeps working even when some specific node in the cluster fails. Other minor advantages is

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 46

that it allows to recovery data in the event of desynchronization, and provides parallel data processing

and high processing capacity; which suits perfectly the decentralized scenario that DELTA brings.

5.2 Conflict policy

XMPP allows multiple logins to the same user account. If a connection makes a request for a resource

that is already in use, the server must decide how to handle the conflict. OpenFire offers several

options to handle these situations, like always kick if there is a resource conflict, never kick if there is

a resource conflict, allow one login attempt, reporting an error but without kick the existing

connection and assigning kick value, specifying the number of login attempts allowed.

5.3 Username Binding

OpenFire allows binding usernames with certificates to enhance the identification of requests in the

network. Binding usernames in the P2P network requires valid certificates that have been signed by an

authorized CA. To achieve this purpose the OpenFire server must be setup with the following options:

Property name Property Value

xmpp.client.cert.policy needed

xmpp.socket.ssl.certificate.accept-selfsigned false

xmpp.socket.ssl.certificate.verify.validity true

xmpp.socket.ssl.client.certificate.verify.validity true

xmpp.socket.ssl.client.certificate.accept-selfsigned false

xmpp.server.cert.policy needed

xmpp.server.tls.policy required

xmpp.socket.ssl.active true

These options define that the connections are made securely using certificates, entailing that clients

can trust the issuer of a request with such certificate attached, and establish a secured channel of

communication. To ensure that the certificates have been legitimately granted, any of the OpenFire

brokers may act as a certifying authority. The section to setup such feature is located in the TLS/SSL

certificates section. Openfire uses the certificates in that list to verify the identity of remote clients and

servers when encrypted connections are established.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 47

Figure 30: OpenFire Certificate Stores

Figure 31: Open Fire Trust Certificate Store

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 48

6. Security-oriented aspects of FEID-related Use Cases

6.1 FEID

Based on the requirements that are documented in D1.1 (and in sequel revisions, i.e. D1.5) [24],

FEIDs are actual devices which will be connected to smart meters to measure energy related data and

through an intelligent lightweight toolkit they will compute real-time flexibility to provide them as

input to the DVN. FEIDs provide aggregated metering from multiple IoT devices that are connected to

customer assets, report issuance and interpretation of OpenADR-based DR request signals. In this

subsection, an initial hardware security approach of the FEID will be given, presenting the TPM

module. Furthermore, the FEID hardware installation will be described, together with the hardware

setup and configuration. Finally, the process of registration of different FEID components will be

analyzed. The image below (Figure 32) depicts a top view of the FEID board, which contains a

number of interfaces, which will be mentioned below.

Figure 32: FEID board top view

Although all aspects around FEIDs will be thoroughly presented in the dedicated deliverable D3.4 -

Fog-enabled Intelligent Devices, some high level information regarding hardware security will be

presented. FEID will integrate on its board a chip called TPM (Trusted Platform Module) which was

developed by the Trusted Computing Group, a group of computer industries and was standardized as

ISO / IEC 11889 [25] in 2009 by the International Organization for Standardization (ISO) and the

International Electrotechnical Commission (IEC). The last revision of the TPM was performed in the

first days of 2018, releasing TPM version 2.0 [26].

The latest TPM version includes attributes in order to support symmetric encryption in the platform

the module is used and also provides the generation of high quality random numbers. Moreover, the

module delivers a protected persistent store for small amounts of data, sticky bits, monotonic counters

and extendable registers as well as an extensive choice of authorization methods to access protected

keys and data. Except for the former characteristics of the TPM, it also allows the use of signing and

verifying digital signatures and certifies the properties of the keys and data.

TPM v2.0 was created by TCG as a library in order to enable users to select the appropriate TPM

design aspects for different levels of implementation and security. Furthermore, new features and

functions have been introduced, to allow the implementation of new cryptographic algorithms when

necessary. Detailed information will be presented in the corresponding deliverable regarding the FEID

system. The figure below shows the differences of the two versions of the TPM (v1.2 and v2.0).

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 49

Figure 33: Differences between the two TPM versions

In the following, we present the description of use cases which are related to the management of

FEIDs, from a security point of view, in DELTA.

6.1.1 FEID Hardware Installation

Use case name BS4 – UC3: FEID Hardware Installation

Authors CERTH/ITI

Brief Description Installation of the Fog Enabled Intelligent

Device in the customer’s premises.

Assumptions & Preconditions Connect FEID to smart technologies and/or to

BMS or to power lines and sensors within the

hosting infrastructure.

Objective To install the FEID hardware in the customer’s

premises by an authorized technician.

Effects/Post Conditions The Aggregator can ensure the proper

installation of the FEID hardware and its

successful inclusion in the platform.

Involved Actors Technician (Aggregator), Prosumer, FEID

Use Case Initiation The Aggregator and the customer agree on the

most suitable time for both involved entities to

install the hardware at the customer’s premises.

Main course  The technician will mount the FEID inside

the customer’s DIN rail enclosure,

occupying 4 positions.

Alternate course -

Relationships with other Use

Cases

-

Architectural

Elements/Services Involved

FEID

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 50

Figure 34: High-level Use Case Diagram

6.1.2 FEID Hardware Setup and Configuration

Use case name BS4 – UC4: FEID Hardware Setup and

Configuration

Authors CERTH/ITI

Brief Description Setup and configuration of the Fog Enabled

Intelligent Device in the customer’s premises by

the technician.

Assumptions & Preconditions Wire up the FEID with the power adapter,

connect it to power lines and sensors within the

hosting infrastructure and configure it using an

application.

Objective To setup and configure the FEID hardware in the

customer’s premises by an authorized technician.

Effects/Post Conditions The Aggregator can ensure the proper operation

of the FEID hardware.

Involved Actors Technician (Aggregator), Prosumer, FEID

Use Case Initiation The Aggregator and the customer agree on the

most suitable time for both involved entities to

setup and configure the hardware at the

customer’s premises.

Main course  Connect all sensors to FEID using one of the

interfaces (RS-232, RS-485, I
2
C, SPI,

UART, Bluetooth v5.0).

 Connect FEID to the network using either

the Ethernet port or the Wi-Fi interface.

 Connect the power cables to the two screw

terminals and power up the FEID.

 Connect over Bluetooth to the FEID to setup

the device with a smartphone/tablet.

 Log in with the credentials.

 Follow the application’s wizard in order to

setup the device.

Alternate course -

Relationships with other Use

Cases

BS4 – UC3

Architectural

Elements/Services Involved

FEID

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 51

Figure 35: High-level Use Case Diagram

6.1.3 FEID Component Registration

Use case name BS4 – UC4: FEID Hardware Setup and

Configuration

Authors CERTH/ITI

Brief Description Setup and configuration of the Fog Enabled

Intelligent Device in the customer’s premises by

the technician.

Assumptions & Preconditions Wire up the FEID with the power adapter,

connect it to power lines and sensors within the

hosting infrastructure and configure it using an

application.

Objective To setup and configure the FEID hardware in the

customer’s premises by an authorized technician.

Effects/Post Conditions The Aggregator can ensure the proper operation

of the FEID hardware.

Involved Actors Technician (Aggregator), Prosumer, FEID

Use Case Initiation The Aggregator and the customer agree on the

most suitable time for both involved entities to

setup and configure the hardware at the

customer’s premises.

Main course  Connect all sensors to FEID using one of the

interfaces (RS-232, RS-485, I
2
C, SPI,

UART, Bluetooth v5.0).

 Connect FEID to the network using either

the Ethernet port or the Wi-Fi___33

interface.

 Connect the power cables to the two screw

terminals and power up the FEID.

 Connect over Bluetooth to the FEID to setup

the device with a smartphone/tablet.

 Log in with the credentials.

 Follow the application’s wizard in order to

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 52

setup the device.

Alternate course -

Relationships with other Use

Cases

BS4 – UC3

Architectural

Elements/Services Involved

FEID

Figure 36: High-level Use Case Diagram

6.1.4 FEID Component Registration

Use case name BS5 – UC5: FEID Component Registration

Authors CERTH/ITI

Brief Description Register the components connected to the FEID

in a customer’s premises and register the FEID

to the DVN by the technician.

Assumptions & Preconditions Connect to the FEID via Bluetooth using a

smartphone/tablet, log in with the necessary

credentials in order to be able to configure and

register the components to the system.

Objective To register the sensors connected to the FEID

hardware in a customer’s premises by an

authorized technician.

Effects/Post Conditions The Aggregator can ensure the proper operation

of the FEID hardware.

Involved Actors Technician (Aggregator), Prosumer, FEID

Use Case Initiation The Aggregator and the customer to agree on the

most suitable time for both involved entities to

register all components at the customer’s

premises.

Main course  Connect over Bluetooth to the FEID using a

smartphone/tablet.

 Open the dedicated application.

 Log in with the credentials.

 Configure the file that contains the names of

all sensors to be registered to FEID.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 53

 Save the configured file.

Alternate course -

Relationships with other Use

Cases

BS4 – UC3, BS4 – UC4

Architectural

Elements/Services Involved

FEID

Figure 37: High-level Use Case Diagram

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 54

7. Conclusions

This deliverable presents all the required details and specifications that are involved in the design and

implementation of an end-to-end secure, privacy preserving framework for all the actors involved in

DELTA’s ecosystem. A concrete documentation of the processes revolving around the management of

digital identities is presented, as well as, the necessary adaptations required to support features of

OpenADR 2.0b. Based on DELTA’s identity services, we survey relevant and mature standards for

access control and discuss their appropriateness in the project’s context. We present our employed

approach and introduce preliminary access control policies revolving one of DELTA’s cybersecurity

infrastructure services, i.e., DELTA’s blockchain, pertaining to both the network, as well as, the smart

contract level. These access control policies form the necessary basis to guarantee end-to-end privacy

in DELTA. Furthermore, we introduce additional security infrastructures that resolve the issues that

stem from the asynchronous nature of the underlying network, i.e., the Internet, which, if left

unchecked, can have severe consequences, both in terms of security, as well as, privacy. To address

the communication across the multiple layers that comprise DELTA’s architecture, we provide

concise details related to DELTA’s P2P network architecture, security and configuration. Lastly, we

conclude by presenting additional, security-oriented use cases pertaining to DELTA’s FEIDs that are a

result of the works involved in drafting this deliverable. The combination of all this information covers

all aspects of DELTA’s security.

H2020 Grant Agreement Number: 773960
Document ID: WP5 / D5.1

 Page 55

References
[1] https://tools.ietf.org/html/rfc5280

[2] https://tools.ietf.org/html/rfc6187

[3] https://tools.ietf.org/html/rfc2315

[4] https://tools.ietf.org/html/rfc7292

[5] https://www.oasis-open.org/committees/

[6] https://www.sciencedirect.com/topics/computer-science/attribute-based-access-control

[7] https://www.avatier.com/products/identity-management/resources/gartner-iam-2020-

predictions/

[8] https://www.axiomatics.com/blog/intro-to-attribute-based-access-control-abac/

[9] https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

[10] https://medium.com/box-tech-blog/allowing-ada-to-view-her-files-boxs-attribute-based-access-

control-solution-d83250216c1

[11] https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-162.pdf

[12] https://auth0.com/docs/authorization/concepts/rbac

[13] Soni, K., & Kumar, S. (2019, February). Comparison of RBAC and ABAC Security Models for

Private Cloud. In 2019 International Conference on Machine Learning, Big Data, Cloud and

Parallel Computing (COMITCon) (pp. 584-587). IEEE.

[14] https://csrc.nist.gov/publications/detail/sp/800-178/final

[15] https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-178.pdf

[16] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, "Role-Based Access Control

Models", IEEE Computer, vol. 29, no. 2, p. 38 – 47, Feb 1996.

[17] D. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, R. Chandramouli, "Proposed NIST Standard

for Role-Based Access Control", ACM Transactions on Information and System Securtiy, vol. 4,

no. 3, p. 224 – 274, Aug 2001.

[18] https://tools.ietf.org/html/rfc958

[19] Network Time Protocol Version 4: Protocol and Algorithms Specification,

https://tools.ietf.org/html/rfc5905#page-5

[20] https://tools.ietf.org/html/rfc7384

[21] IEEE 1588-2008, IEEE Instrumentation and Measurement Society. TC9 Sensor Technology,

"IEEE standard for a precision clock synchronization protocol for networked measurement and

control systems", 2008.

[22] https://tools.ietf.org/html/rfc3161

[23] OpenFire https://www.igniterealtime.org/projects/openfire/

[24] D1.1 DELTA Requirements, Business Scenarios and Use Cases, March 2019

[25] https://www.iso.org/standard/50970.html

[26] W. Arthur, D. Challener, A Practical Guide to TPM 2.0: Using the Trusted Platform Module in

the New Age of Security Apress, 2015.

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6187
https://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc7292
https://www.oasis-open.org/committees/
https://www.sciencedirect.com/topics/computer-science/attribute-based-access-control
https://www.avatier.com/products/identity-management/resources/gartner-iam-2020-predictions/
https://www.avatier.com/products/identity-management/resources/gartner-iam-2020-predictions/
https://www.axiomatics.com/blog/intro-to-attribute-based-access-control-abac/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://medium.com/box-tech-blog/allowing-ada-to-view-her-files-boxs-attribute-based-access-control-solution-d83250216c1
https://medium.com/box-tech-blog/allowing-ada-to-view-her-files-boxs-attribute-based-access-control-solution-d83250216c1
https://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.SP.800-162.pdf
https://auth0.com/docs/authorization/concepts/rbac
https://csrc.nist.gov/publications/detail/sp/800-178/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-178.pdf
https://tools.ietf.org/html/rfc958
https://tools.ietf.org/html/rfc5905#page-5
https://tools.ietf.org/html/rfc7384
https://tools.ietf.org/html/rfc3161
https://www.igniterealtime.org/projects/openfire/
https://www.iso.org/standard/50970.html

