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Abstract. Knowledge Graphs (KGs) that publish RDF data modelled
using ontologies in a wide range of domains have populated the Web. The
SHACL language is a W3C recommendation that has been endowed to
encode a set of either value or model data restrictions that aim at validat-
ing KG data, ensuring data quality. Developing shapes is a complex and
time consuming task that is not feasible to achieve manually. This arti-
cle presents two resources that aim at generating automatically SHACL
shapes for a set of ontologies: (1) Astrea-KG, a KG that publishes a set
of mappings that encode the equivalent conceptual restrictions among
ontology constraint patterns and SHACL constraint patterns, and (2)
Astrea, a tool that automatically generates SHACL shapes from a set
of ontologies by executing the mappings from the Astrea-KG. These two
resources are openly available at Zenodo, GitHub, and a web application.
In contrast to other proposals, these resources cover a large number of
SHACL restrictions producing both value and model data restrictions,
whereas other proposals consider only a limited number of restrictions
or focus only on value or model restrictions.
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1 Introduction

Knowledge Graphs (KGs) are becoming pervasive on the Web [5]. Since 2014
there is a growing number of KGs from different domains that publish a quite
large amount of data using RDF and modelled with ontologies [19]. As a result,
in the last decade a considerable effort has been put in developing ontologies for
specific domains [21]. Due to the growth of these public available KGs, the W3C
has promoted a recommendation called SHACL (Shapes Contraint Language) to
validate the RDF graphs [2]. In the last years Ks validation by means of SHACL
shapes has gained momentum and has become a relevant research topic [14].
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A shape defines a set of restrictions that data from a KG must fulfil. There are
two kinds of restrictions [15], those that refer to the data model, e.g., cardinality,
and those that apply to the data values, e.g., string patterns. Due to this reason
developing shapes has become the cornerstone solution to validate KG data.
Nevertheless, developing data shapes is a complex task due to the potential
size of the data and all the available restrictions that require a deep domain
knowledge (like the one encoded in ontologies); in addition, developing shapes
manually is a dull-task and error-prone.

Different proposals to assist shapes generation have been proposed. Some
focus on learning shapes from a set of data [16, 7, 22, 1]; these proposals cover a
small amount of the restrictions, and most of the learnt restrictions refer to value
restrictions. Nevertheless, since KGs are modelled by ontologies, when these
proposals learn model restrictions from data they do not take such ontologies
into account, leading to a potential discordance with the model. A lower number
of proposals aim at aligning the restrictions encoded by OWL constructs with
those of SHACL [17, 12]. Unfortunately, these proposals cover a small number
of constructs, and do not generate any shapes.

In this paper two resources to generate automatically SHACL shapes [13]
from a set of ontologies are introduced. The resources are: A) the Astrea-KG1

that contains 158 mappings, each of which relates an ontology constraint pattern
with an equivalent SHACL constraint pattern; and B) the Astrea2 tool that
automatically generates SHACL shapes for a set of input ontologies by using
the mappings provided by the Astrea-KG. The mappings in the Astrea-KG are
endowed from a theoretical point of view, presented as ontology and SHACL
construct patterns; in addition, the Astrea-KG also contains an implementation
as SPARQL CONSTRUCT queries for such mappings. These queries issued over
a set of ontologies produce their SHACL shapes, which is the task performed by
Astrea.

The shapes generated with the resources presented in this paper contain
data and model restrictions, covering 60% of the SHACL available restrictions.
Astrea has been evaluated by performing two experiments. The former consists
in generating the SHACL shapes of 5 well-known ontologies, such as SAREF
or SSN, and two ontologies developed in the context of two European projects.
The latter consists in analysing the expressivity and richness of the generated
shapes. For the sake of readability, Table 1 shows the prefixes and their associated
namespaces that are used through the paper.

Table 1. Summary of the prefixes used through the paper

Prefix Namespace
sh http://www.w3.org/ns/shacl#
owl http://www.w3.org/2002/07/owl#
rdfs http://www.w3.org/2000/01/rdf-schema#
xsd http://www.w3.org/2001/XMLSchema#

1 https://astrea.helio.linkeddata.es
2 https://astrea.linkeddata.es
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The rest of this article is structured as follows. Section 2 reports an analysis of
some proposals from the literature; Section 3 introduces and details the mappings
published in the Astrea-KG; Section 4 reports the implementation of Astrea that
produces shapes using the Astrea-KG; Section 5 explains the experiments carried
out in this article; finally, Section 6 recaps our findings and conclusions.

2 Related work

The increasing uptake of SHACL shapes as a mechanism for validating RDF
data has lead to the proposal of several approaches to assist practitioners in their
generation. Approaches can be classified into two types: A) Automatic generation
of shapes from data, which aim at learning shapes from a training data set; and
B) Analysis of the equivalence between ontology and SHACL restrictions. Table
2 summarises these approaches indicating the source of the shapes and whether
they support their automatic generation.

Table 2. Comparison of approaches that deal with shapes generation

Proposal Extracted from
data

Extracted from
ontologies

Automatically
generated

Mihindukulasooriya et al. X × X
Fernández-Alvarez et al. X × X

Spahiu et al. X × X
Boneva et al. X × X
Pandit et al. × X ×
Knublauch × X ×

Astrea × X X

Xsupported
× not supported

Regarding the approaches oriented to the generation of shapes through data,
Mihindukulasooriya et al. [16] aim at using machine learning techniques to pro-
duce RDF Shapes. The authors propose a data-driven approach for inducing
integrity constraints for RDF data using data profiling, which are then com-
bined into RDF Shapes. Although the proposed approach is defined in a generic
way, it is validated using only cardinality and range constraints.

Another work related to the generation of shapes from data is the one pre-
sented by Fernández-Alvarez et al. [7], which infers Shape expressions associated
to the classes in an RDF graph. This approach consists in the following steps:
(1) find all the instances of the target classes; (2) for each class, find all the
triples whose subject is one of its instances and use them all to build a profile
of the class; and (3) turn each profile into a shape written in ShEx language3.

The work of Spahiu et al. [22] was also designed to generate shapes from
RDF data. It uses semantic profiles, i.e., a summary that provides an abstract
but complete description of the dataset content and statistics, of a given RDF
graph and translates them into SHACL shapes.

Finally, Boneva et al. [1] presented Shape Designer, a graphical tool for build-
ing SHACL or ShEx constraints for an existing RDF graph. Shape Designer

3 https://shex.io/
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provides a set of queries and shape patterns that can be selected by the user
to generate a shape constraint. Such shape constraint can then be added to the
SHACL or ShEx schema under construction.

Concerning the analysis of the equivalence between ontology and SHACL
restrictions, the position paper presented by Pandit et al. [17] encourages the
reuse of Ontology Design Patterns (ODPs) [8] beyond the data modelling phase
to generate SHACL shapes. The authors discuss the similarity that could be
obtained between the axioms used to model ODPs and the constraints within
SHACL shapes. However, this work does not identify such equivalences between
ontologies and SHACL.

To conclude, Knublauch [12] proposes a comparison between OWL and SHACL.
This work associates each OWL constraint with its similar SHACL constraint,
claiming that a syntactic translation between OWL and SHACL is feasible. Al-
though the author of this work identified similarities between OWL and SHACL,
he relates an OWL construct with at most two SHACL constructs. Therefore, it
is not taken into account the use of patterns, which hinders the translation.

The resources presented in this paper aim at assisting the automatic genera-
tion of SHACL shapes from ontologies, taking into account OWL 2, RDFS, and
XSD restrictions. As it is illustrated in Table 2, although there are approaches
that deal with shapes extracted from ontologies, only Astrea supports their au-
tomatic generation. However, this work is grounded on these previous works that
discuss the similarity between OWL and SHACL constraints.

3 Astrea-KG Mappings

The cornerstone element to automatically generate shapes from a set of ontolo-
gies are the mappings within the Astrea-KG. These mappings relate one or more
ontology construct patterns with the equivalent SHACL construct patterns that
validate such ontology construct pattern. However, OWL and SHACL are not
considered equivalent in their interpretation. There are differences in how OWL
interprets restrictions (for inferencing), and how SHACL interprets constraints
(for validation) [12].

The ontology construct patterns include constructs from the well-known
OWL 2, RDFS, and XSD specifications. In addition, the mappings have been
implemented as SPARQL CONSTRUCT queries in which the WHERE clause
contains the ontology construct patterns and the CONSTRUCT clause contains
the SHACL construct patterns.

Notice that from a conceptual point of view the mappings are bi-directional,
since they relate construct patterns. Nevertheless, their implementation is not
bi-directional: the current SPARQL queries identify ontology construct patterns
and translate them into the equivalent SHACL construct pattern.

Previous works already stated the similarity between OWL and SHACL con-
structs. However, during the development of the mappings we noticed that the
relation between single constructs was not enough to generate the shapes. The
reason is that an ontology construct may be specified within different contexts
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and the equivalent SHACL construct may change depending on such context. As
a result, the mappings relate patterns of constructs rather than just constructs.

For instance, the RDFS construct rdfs:range can be considered equivalent to
the SHACL construct sh:class. But in order for such equivalence to be correct the
rdfs:range has to be defined in the context of an owl:ObjectProperty. Listing 1.1
shows the SHACL construct pattern of the sh:class that is related to the ontology
contruct rdfs:range. Notice that this SHACL construct makes only sense in the
context of a sh:PropertyShape.

? shapeUrl a sh : PropertyShape ;
sh : c l a s s ? rangeURI .

Listing 1.1. SHACL contruct pattern for sh:class

Listing 1.2 reports the ontology construct pattern for rdfs:range that is
equivalent to the one of Listing 1.1. However, the statement rdfs:range could
be expressed alternatively: instead of having an URL in its range it may have
a blank node that has different properties (owl:unionOf, owl:someValuesFrom,
or owl:allValuesFrom among others). For these cases other ontology construct
patterns must be specified, like the one reported in Listing 1.3. Both ontology
construct patterns are different yet they are equivalent to the same SHACL
construct pattern.

? s u b j e c t a owl : ObjectProperty ;
r d f s : range ?rangeURL .

Listing 1.2. Ontology construct pattern
for rdfs:range

? s u b j e c t a owl : ObjectProperty ;
r d f s : range [

owl : unionOf ?rangeURL
] .

Listing 1.3. Alternative ontology
construct pattern for rdfs:range

As it can be noticed the constructs are not enough to automatically gen-
erate shapes, patterns of constructs are required in the mappings to generate
them. Also, it is worth mentioning that different ontology construct patterns
may generate the same SHACL construct pattern, or vice versa.

3.1 Methodology for mappings generation

The mappings were designed and written following a thorough process, which
consist in the following steps:

1. To manually list OWL 2, RDFS, XSD constructs. Based on the OWL
2 specification [11], a list of OWL 2 constructs were gathered from the OWL
2 Web Ontology Language Primer [11]. It was decided to consider every
OWL 2 construct except for the versioning constructs and the instance ones.
Thus, this list includes 55 constructs out of the 88 total constructs defined in
the OWL 2 specification. The same process was performed for the RDFS [3]
and XSD [18] specifications obtaining 8 and 37 constructs, respectively.
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2. To manually list SHACL constructs. Based on the SHACL specifi-
cation [13], the list of SHACL restrictions was collected from the Shapes
Constraint Language specification. It was decided to consider every SHACL
restriction except for those related to Validation Report restrictions, since
they do not add additional content to the shape. Thus, the list includes 58
constructs out of the 301 defined in the SHACL specification document.

3. To review existing relations among ontologies and SHACL. Some
previous works have attempted to relate OWL 2 constructs with the SHACL
constructs [12, 17]. Some authors hypothesised that construct patterns would
be required to automatically generate shapes [17]. These proposals were
taken as starting point to develop the Astrea-KG mappings.

4. To generate mappings between ontology construct patterns and
their equivalent SHACL construct patterns. For each ontology con-
struct pattern, the equivalent pattern in SHACL has been proposed. It
should be mentioned that an ontology construct pattern can be equivalent
to multiple SHACL construct patterns, and vice versa.

5. To include data restrictions. The only restrictions over data that ontolo-
gies encode is the xsd:pattern one. Nevertheless, the XSD schema specifies
different datatypes that have specific restrictions over values [18], such as
their maximum, minimum, or lexical pattern. We incorporated to the map-
pings the restrictions specified by the XSD datatype anytime in an ontology
a XSD datatype was specified. For instance, when a xsd:nonNegativeInteger
is defined as datatype for a literal it means that it follows the pattern
“[−\+]?[0− 9]+”, an has a minimum inclusive of 0.

6. To implement executable-mappings. Finally, all the identified equiva-
lences between the ontology construct patterns (OWL, RDFS, and XSD)
and the SHACL construct patterns were implemented as SPARQL queries.

3.2 Mappings ontology

The Astrea-KG contains and publishes the information of the 157 defined map-
pings. A vocabulary to model these mappings has been defined4. Figure 1 shows
an overview of such vocabulary, which models the relation between the mappings
between ontology and SHACL construct patterns, and the mapping implemen-
tations as SPARQL queries.

As depicted in Figure 1, two Patterns can be mapped by each other, which
indicates that they are equivalent. Any of these patterns could be an Ontolo-
gyPattern, if the pattern includes statements that contain any construct from
OWL, RDFS, or XSD. Alternatively, a pattern may be a SHACLPattern if it
includes statements that contain SHACL constructs. A Pattern can be mapped
by other Pattern, and this relation is symmetric. Furthermore, each Pattern is
related to a MappingImplementation which contains the necessary information
to translate this source pattern to the equivalent target pattern.

4 https://w3id.org/def/astrea
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An example of mapping is depicted in Figure 2. It can be observed that
the OntologyPattern is capturing the cardinality pattern when it is specified
as an owl:Restriction for an owl:Class. Similarly, the SHACLPattern refers to
a sh:PropertyShape related to a sh:NodeShape, which has a sh:minCount and
sh:maxCount. These two patterns are related by means of the isMappedBy rela-
tion, which indicates that the OntologyPattern is mapped by the SHACLPattern
and vice versa.

Finally, in order to generate a shape the OntologyPattern is related to a
MappingImplementation instance that implements such translation by means of
a SPARQL query; notice that the WHERE clause encodes the ontology construct
pattern and the CONSTRUCT the SHACL construct pattern.

4 Astrea

The tool Astrea aims at reading the Astrea-KG, fetching the mappings within,
and executing their implementation, i.e., the SPARQL queries, over a set of
ontologies. The architecture of Astrea is depicted in Figure 3; the depicted com-
ponents and their performed tasks are the following:

OntologyManager: this component is fed with a set of ontology URLs pro-
vided as input (step 1 in Figure 3). These ontologies are downloaded and, then,

isTranslatedBy (1..1)

involvesPattern Construct

hasTarget (1..1)

MappingImplementation

isMappedTo (S)

query :: string

statement:: string

OntologyConstruct

SHACLConstruct

SHACLPattern

OWLPattern

Legend

Datatype property

Class

object property rdfs:subClassOf

S: Symmetric Property

rdfs:type

"literal value"^^datatype

Instance

Fig. 1. Overview of the vocabulary.
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statement

isTranslatedBy

isMappedTo (S)ex:a1461

hasTarget

ex:a1461/mapping

query

"PREFIX owl: <http://www.w3.org/2002/07/owl#> 
 PREFIX sh: <http://www.w3.org/ns/shacl#>
 CONSTRUCT { ?shapeUrl a sh:PropertyShape;
     sh:maxCount 1 .
 } WHERE {
     ?property a owl:FunctionalProperty        
     BIND(URI(CONCAT('https://astrea.linkeddata.es/shapes#', MD5(STR(?property)))) AS ?shapeUrl).
} " ^^xsd:string

MappingImplementation

"?class a owl:Class . 

?type rdfs:subClassOf ?owlPropertyRestriction .

?owlPropertyRestriction a owl:Restriction .

?owlPropertyRestriction owl:onProperty ?rangedProperty .

?owlPropertyRestriction owl:cardinality ?cardinality.
"^^xsd:string

OWLPattern

statement

ex:a1462 SHACLPattern

"?shapeUrl a sh:NodeShape; 
  sh:property ?embeddedNode .
?embeddedNode a sh:PropertyShape;

sh:maxCount ?cardinality;
     sh:minCount ?cardinality"^^xsd:string.

Fig. 2. Example of SPARQL query using the vocabulary proposed in this work

for each ontollogy the OntologyManager checks if the statement owl:import is
present. When such statement is present, the ontology URL specified is down-
loaded by the OntologyManager (steps 2 and 3 in Figure 3). Finally, all the
ontologies retrieved are sent to the KG-Manager (step 4 in Figure 3).

Astrea-KG: the Astrea-KG is the KG previously described and available
online. The Astrea tool reads the latest version of this KG, entailing that any-
time a mapping is included, or modified, Astrea is aware of such update.

KG-Manager: Then, all the mapping implementations are retrieved from
the Astrea-KG (step 5 in Figure 3). Since the implementations of the mappings
are CONSTRUCT queries, they produce as result an RDF graph that contains
the SHACL shapes associated to the ontology construct mapping encoded in
the CONSTRUCT query. The KG-Manager issues all these queries over the
ontologies provided by the OntologyManager, during step 4. As a result, the
output of each query is stored in the same RDF graph. Finally the RDF graph
containing all the generated SHACL shapes is returned (step 6 in Figure 3).

4.1 Expressivity of the SHACL shapes generated by Astrea

Table 3 summarises the SHACL restrictions that are supported by Astrea using
the Astrea-KG mappings. The symbol “X” indicates that Astrea supports the
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Fig. 3. Astrea architecture.

restriction, while “≈” indicates that Astrea supports it partially, and “×” that
it is out of scope of Astrea.

From Table 3 it can be observed that Astrea covers 60% of the SHACL re-
strictions and 40% are not supported. Notice that the sh:pattern restriction is
only partially covered. In addition, the unsupported restrictions can be classified
as follows: data value restrictions, practitioner-required restrictions, and unfeasi-
ble restrictions. Next, we provide an insight for the partially covered restrictions
and for the three unsupported types of restrictions.

Partially covered: ontologies infrequently contain patterns for data values,
although they could be specified by means of the xsd:pattern statement. Never-
theless, it is common to assign a XSD datatype to data values; these datatypes
have restrictions defined by the W3C [18]. The mappings are endowed to cover
the patterns specified by the xsd:pattern statement. Additionally, when a data
value has a XSD datatype with no pattern defined, the mappings automatically
inject the restrictions defined by the W3C. As a result, Astrea covers sh:pattern
restrictions under these two circumstances.

In addition, the sh:qualifiedValueShape restriction specifies the condition that
a specified number of value nodes needs to conform to. Thus, the range of this
construct could be any shape that refers to a constraint, e.g., the class of the
node, the possible list of values of the node or the pattern that the node should
follow. Astrea only covers the sh:qualifiedValueShape restriction when it defines
the specific class of the node.
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Data value restrictions: the majority of the restrictions from Table 3
are not supported because they refer to data instances; which are 20.7% of
the unsupported restrictions. Due to the fact that Astrea only takes ontolo-
gies into account, and they are not expected to have data instances, support-
ing these restrictions is not feasible. These restrictions are: sh:targetObjectsOf,
sh:targetSubjectsOf, sh:alternativePath, sh:zeroOrMorePath, sh:oneOrMorePath,
sh:zeroOrOnePath, sh:ignoredProperties, sh:lessThan, sh:lessThanOrEquals, sh:order,
sh:BlankNode, and sh:BlankNodeOrLiteral.

Practitioner-required restrictions: a smaller amount of restrictions, i.e.,
13.8%, require a practitioner to establish them. These restrictions depend on
a domain problem and the granularity of the desired validation using shapes.
These restrictions are: sh:targetNode, sh:value sh:flags, sh:defaultValue, sh:group,
sh:qualifiedValueShape, sh:qualifiedValueShapeDisjoint, and sh:close.

Unfeasible restrictions: 5.5% of the restrictions were not supported be-
cause their equivalent ontology construct patterns were not found. These restric-
tions are: sh:languageIn, sh:uniqueLang, and sh:xone.



Astrea: automatic generation of SHACL shapes from ontologies 11

SHACL restriction Coverage SHACL restriction Coverage
sh:Shape X sh:maxInclusive X
sh:NodeShape X sh:maxLength X
sh:PropertyShape X sh:minCount X
sh:nodeKind X sh:minExclusive X
sh:targetClass X sh:minInclusive X
sh:targetNode ×b sh:minLength X
sh:targetObjectsOf ×a sh:node ×b

sh:targetSubjectsOf ×a sh:not X
sh:value ×b sh:or X
sh:path X sh:pattern ≈
sh:inversePath X sh:flags ×b

sh:alternativePath ×a sh:property X
sh:zeroOrMorePath ×a sh:qualifiedMaxCount X
sh:oneOrMorePath ×a sh:qualifiedValueShape ≈
sh:zeroOrOnePath ×a sh:qualifiedValueShapesDisjoint ×b

sh:and X sh:qualifiedMinCount X
sh:class X sh:uniqueLang ×c

sh:closed ×b sh:xone ×c

sh:datatype X sh:defaultValue ×b

sh:ignoredProperties ×a sh:description X
sh:maxCount X sh:group ×b

sh:disjoint X sh:name X
sh:equals X sh:order ×a

sh:hasValue X sh:BlankNode ×a

sh:in X sh:BlankNodeOrIRI X
sh:languageIn ×c sh:BlankNodeOrLiteral ×a

sh:lessThan ×a sh:IRI X
sh:lessThanOrEquals ×a sh:IRIOrLiteral X
sh:maxExclusive X sh:Literal X
X covered
≈ partially covered
× not covered
a not covered due to data value restrictions
b not covered due to practitioner-required restrictions
c not covered due to unfeasible restrictions

Table 3. List of SHACL restrictions supported by Astrea

4.2 Availability, sustainability, extensibility and maintenance of the
resources

The Astrea tool is available as an online web application2. This web application
also provides a REST API and its documentation5. Furthermore, the code of the
tool is also available in GitHub6 under the Apache 2.0 licence7. The maintenance
of the tool will be facilitated through the continuous update of the mappings,
and the fact that the architecture is automatically aware of these changes.

The current version of the Astrea-KG is available as a Zenodo resource. It
has a canonical citation using a DOI (https://doi.org/10.5281/zenodo.3571009(
and is published under the Creative Commons Attribution 4.0 International8

5 https://astrea.linkeddata.es/swagger-ui.html
6 https://github.com/oeg-upm/Astrea
7 https://www.apache.org/licenses/LICENSE-2.0
8 https://creativecommons.org/licenses/by/4.0
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(CC BY 4.0) license. In addition, the KG is publicly available for third-party
contributions or reusability1. A further analysis will be performed in order to
include, if possible, new mappings.

5 Experiments

In order to validate the two resources of this paper, i.e., Astrea-KG and Astrea,
we performed two experiments. Both experiments rely on a set of well-known on-
tologies, most of which are standards, namely: W3C Time [4], ETSI SAREF [6],
ETSI SAREF extension for environment9 (S4ENVI), ETSI SAREF extension
for buildings [20] (S4BLDG)10, and W3C SSN [10] and DBpedia 2016-1011. In
addition, experiments relied on two ontologies developed in the context of the
European Projects VICINITY and DELTA, namely: the VICINITY ontology12

and the DELTA ontology13. All the shapes generated during both experiments
using Astrea were manually validated in term of syntax correctness using the
SHACL playground14.

Bear in mind that whether an ontology uses the term owl:imports the ref-
erenced ontology will be loaded and its shapes generated; for example, SAREF
imports W3C Time or SSN imports SOSA [9], or VICINITY imports other well-
known ontologies. Consider that the restrictions in the shapes depend directly
on how the ontologies are expressed, using third-party ontologies provides a fair
input for Astrea since they have not been biased to produce especially expressive
and rich shapes.

In addition to these experiments the Astrea implementation has been tested
by means of 108 JUnit tests, available on its GitHub repository6. For each test
the expected SHACL shape was defined, and an ontology fragment was provided
as input to Astrea. As a result, the expected output was compared to the actual
result of Astrea.

5.1 SHACL shapes of public available ontologies

The first experiment consists in generating the SHACL shapes of all the ontolo-
gies previously mentioned, measuring the number of classes and properties (data
and object properties) within and the number of sh:NodeShape and sh:Proper-
tyShape generated. In addition, the total number of SHACL restrictions and
the average time that took generating 10 times each of the shapes is reported.
Table 4 recaps the results of this experiment.

The generation times for the ontologies are quite low. Figure 4 depicts how
the generation times are related to the number of total SHACL restrictions

9 https://saref.etsi.org/saref4envi
10 https://saref.etsi.org/saref4bldg
11 http://downloads.dbpedia.org/2016-10/dbpedia 2016-10.owl
12 http://iot.linkeddata.es
13 http://delta.iot.linkeddata.es
14 https://shacl.org/playground/
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Ontology Classes Properties Node Shapes Property Shapes
Total

Restrictions
Generation
Time (s)

DELTA 74 100 74 166 1,269 0.77

DBpedia 760 2,865 760 3,247 26,940 4.73

SAREF 112 97 112 238 2,076 2.05

S4BLDG 71 263 71 570 3,533 0.48

S4ENVI 30 37 30 86 699 0.35

SSN 22 38 22 87 628 1.23

Time 20 61 20 113 807 0.92

VICINITY 94 155 94 210 1,728 1.49
Table 4. SHACL shapes generated with Astrea from a set of ontologies

generated in the shapes. No correlation can be analysed since Astrea requests
to remote servers the code of the ontologies when generating shapes on the fly.
As a result, some servers can answer faster with large ontologies and others
slower with smaller ones. This action introduces noise that prevents studying
the scalability or the correlation between SHACL restrictions and generation
time.
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Conclusions: the ratio of classes is held in the generated shapes. The ratio
of properties is lower than the property shapes, the reason is the existence of
restrictions for properties that apply only when they are used by a specific
class producing more property shapes. Unfortunately, analysing the scalability
is unfeasible in this scenario as previously explained. Nevertheless, generating
shapes is not a critical task and the generation times for large ontologies such
as DBpedia are rather low; less than 5 seconds for producing 26,940 SHACL
restrictions.

5.2 SHACL restrictions produced by Astrea

In this experiment the expressiveness and richness of the generated shapes for
the ontologies considered are analysed; the expressiveness and richness refer to
the variety of SHACL constructs that a generated shape may contain. For this
purpose, Table 5 reports all the restrictions that can be defined in SHACL and,
for each, which were produced for the given ontologies. Notice that the last row
reports the total number of SHACL restrictions that a shape has.

Conclusions: the results reported in Table 5 show how expressive and rich
the SHACL shapes produced by Astrea are. The shape of the Time ontology con-
tains 65% of all the supported constructs, SAREF 77%, SAREF for environment
and for building contain both 68%, SSN 56%, DBpedia 38%, and VICINITY and
DELTA contain both 65%. It is worth mentioning that some of the SHACL con-
structs where not generated although they are supported, the reason is that
their associated ontologies lacked of the ontology construct patterns required to
generate such SHACL constructs.

6 Discussion and Conclusions

Nowadays, data has been published as Knowledge Graphs in a wide number of
environments and domains. The data of these KGs is expressed in RDF and
modelled by means of ontologies. SHACL shapes have been endowed with the
goal of providing a validation mechanism to guarantee data quality for these
Knowledge Graphs. Producing SHACL shapes manually is an unfeasible task,
due to the data size, to the need for expert knowledge, and to the need to use as
much different restrictions as possible. Astrea generates SHACL shapes taking as
input ontologies, which encode the expert knowledge of a domain, and produces
either data model and data value restrictions.

In this article two main contributions were presented: A) The Astrea-KG,
that contains a set of mappings that allow the generation of SHACL shapes from
one or more ontologies; and B) Astrea, which is a tool that using the Astrea-
KG produces the shapes. We carried out two experiments, the former aims at
evaluating the generation time, whereas the second evaluates the expressiveness
of the SHACL shapes produced.
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Table 5. Expressivity of the generated SHACL shapes

SHACL Restriction DBpedia DELTA SAREF S4BLDG S4ENVI SSN Time VICINITY
sh:NodeShape 760 74 112 71 30 22 20 94
sh:PropertyShape 3,247 166 238 570 86 87 113 210
sh:nodeKind 4,037 240 350 641 116 109 133 304
sh:targetClass 760 74 112 71 30 22 20 94
sh:path - 67 141 307 49 49 52 60
sh:inversePath - - 1 - 1 1 - 2
sh:and - - - - - - - -
sh:class 828 42 84 218 37 41 33 89
sh:datatype 1,760 33 37 172 24 1 32 28
sh:disjoint 25 1 5 2 11 23 1 6
sh:equals 634 1 - - - - - 3
sh:hasValue - - 15 - 3 - 5 -
sh:in - - - - - - - -
sh:maxCount 30 - 42 1 9 15 38 16
sh:maxExclusive - - - - - - - -
sh:maxInclusive 2 - - - - - - -
sh:maxLength - - - - - - - -
sh:minCount - - 19 - - - 19 -
sh:minExclusive - - - - - - - -
sh:minInclusive 285 - 4 1 - - 4 -
sh:minLength - - - - - - - -
sh:not - 30 49 42 15 17 9 29
sh:name 11,780 154 209 333 66 57 81 221
sh:BlankNodeOrIRI - 62 63 179 24 36 33 121
sh:IRI - 74 112 71 30 22 20 94
sh:Literal - 38 34 84 13 2 28 29
sh:IRIOrLiteral - 67 141 307 49 49 52 60
sh:pattern 1,560 22 28 82 9 1 24 24
sh:property - 29 49 42 15 17 9 28
sh:qualifiedMaxCount - 1 2 2 5 - - 4
sh:qualifiedMinCount - 1 10 2 5 - - -
sh:description 1,232 92 208 333 67 57 80 208
sh:or - - 1 - - - 1 -
sh:qualifiedValue\-Shape - 1 10 2 5 - - 4

Total restrictions 26,940 1,269 2,076 3,533 699 628 807 1,728

The mappings presented in this article are bi-directional; however, the imple-
mentation provided in Astrea-KG works only from ontology construct patterns
to SHACL construct patterns. A further analysis will be performed in the future
to design the mapping implementations that produce ontologies from SHACL
shapes. Implementing the round-trip translation will enable an interesting re-
search path that may settle the basis to establish potential new quality mea-
surements for shapes; checking how aligned their restrictions are regarding a
given ontology.

Finally, during the experiments carried out we realised that there is not an
automatic way to compare shapes, which could report which one has richer
expressiveness or which is more restrictive. Similarly, we noticed that there is
no way to combine two or more shapes, which is a rather interesting issue; this
experience led to endow the definition of operators that combine shapes. For
instance, defining an operator restrictive whose input are two shapes, and which
output will be a new shape with the hardest restrictions from both inputs.
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Astrea is meant to offer different extension points: including new patterns,
applying other shape-learning techniques that are not ontology-based to enhance
output shapes, or derived research lines that use automatic-shape generation.
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