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Executive Summary 

Management and exploitation of energy resources is a major priority for energy retail markets and 

utilities. The participation of residential customers in energy-projects expands the opportunities and 

benefits for both sides, not only for potential flexible demands, but also for distributed energy 

generation. However, at the same time, this integration of small and medium customers in energy 

markets increases management complexity. The requirements for the exploitation of these energy assets 

demand sufficient services that provide increased understanding of consumers/prosumers behaviour, 

grouping of customers in terms of their needs and delicate management in order to reach the next level 

in energy savings. This awareness of the customers’ behaviour should be acquired progressively and 

Energy Portfolio Segmentation module is responsible to apply the segmentation techniques according 

to the aggregator’s/retailer’s policy and strategy, formulate new strategies and demand response policies 

and expand the business markets possibilities for the energy actors. All these strategies should be 

oriented to customers' needs, achieving the best services that can be offered to each user in order to 

extract the maximum potential flexibility from each one. Therefore, energy aggregators in the 

deregulated energy markets need to model and precisely define the customers’ segments profiles in a 

comprehensive and clear way. A methodology to identify these energy profiles of customers and group 

them in larger scale segments is proposed in this deliverable. A variety of clustering algorithms and data 

pre-processing methods have been explored towards levering  

 

The DELTA Asset Segmentation component is responsible for creating and arranging the DELTA 

Virtual Nodes, assign DELTA customers in them based on their overall static and dynamic 

characteristics towards enabling a more efficient portfolio handling. This tool is employed by the 

Aggregator’s Decision Support System in order to timely allocate its small and medium customers to 

larger segments that can participate dynamically even in existing Demand Response markets.  
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  Introduction 

 Scope and objectives of the deliverable 

This deliverable is associated with the Energy Portfolio Segmentation assignment as described in Task 

4.2 of the DELTA project. The report focuses on describing the methodology, the results and the process 

applied in order to manage the dynamic distribution of the Aggregator’s assets (FEIDs) among the DVN 

Multi Agent Systems in the Energy Portfolio Segmentation module, and to identify the appropriate 

DVN candidate for a new customer in the Energy Portfolio Classification module. The system stability 

and efficient management of aggregator assets are the main objectives of this tool and the results are 

presented in the later section. Furthermore, this report studies the use of market segmentation and 

highlights the practical obstacles and research limitations/implications encountered providing an 

insightful explanation of how segmentation may be conducted.  

 Structure of the deliverable 

The work presented in this deliverable is structured as follows: 

 

 Section 2 presents the literature review on the topic of Segmentation services for Energy 

Aggregators, including an overview of the DELTA Aggregator’s Energy Portfolio 

Segmentation (AEPS) engine.  

 

 Section 3 presents the first sub-module of the AEPS, namely the Aggregator’s Portfolio 

Classification, introducing the overall methodology and its functionalities, and how it addresses 

one of the core DELTA use cases,  

 

 Section 4 follows with the second sub-module of the AEPS, namely the Aggregator’s Portfolio 

Segmentation that further enriches the initial creation of the DELTA Virtual Nodes based on 

actual dynamic characteristics. A detailed overview of the data and the methodology for the 

implementation is presented.   

 

 Section 5 presents the results of the Energy Portfolio Segmentation engine, with specific 

scenarios, and finally,  

 

 Section 6 concludes this report.  

      

 Relation to other tasks and deliverables 

This deliverable is closely connected with Task 2.2 and the D2.2 that concerns an analysis of Demand 

Response strategies that are applied in the current Energy Markets while also providing a review of 

state-of-the-art research on Demand Response mechanisms that pertain to energy retail and Smart Grids. 

Additionally, this deliverable gives an overview of the formulation of DVN Multi Agent System that is 

examined in T3.2 and Deliverable 3.2 where further clustering mechanisms are applied over the assets 

of each DVN in terms of identifying patterns and opportunities for efficient management of energy 

resources. Finally, the resulting tool will be integrated to the Aggregator DSS which is part of activities 

of T4.4 and will be deployed at the pilot sites where it will be further evaluated under activities of T7.3 

and T7.4.  
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 Segmentation services for Energy Aggregators  

 Literature Review  

The development towards Smart distribution Grids and the decentralization of the power systems 

requires the technology, modern buildings and other appliances to be energy efficient as well as energy 

flexible. The existence of flexibility in power systems is extremely crucial in order to facilitate 

integration of renewable energy sources and cover their intermittency with the Demand Response 

strategies. The achievement of the aforementioned integration requires data monitoring, which has been 

achieved through advance metering infrastructures such as smart meters. However, the wide variety of 

event information and the large volume of data pose high risks in operation and power distribution 

between electricity customers, which affects the reliability and the profitability of the power systems 

[1]. For this reason, clustering electricity customers based on their load consumptions is necessary, and 

an upcoming promising solution for risk elimination. 

 

In this case, clustering/segmentation is a data mining technique where electricity customers are selected 

and categorized in various groups (clusters/segments) based on their load profiles. In addition, this 

method expedites the specification of intrinsic patterns in the big data sets that have emerged. 

Essentially, all the smart appliances have generated large volumes of data with limited information, and 

by clustering data and customers in small groups it will reduce the dimensionality in the customers’ 

data sets, and provide quick access to useful information, directed to certain clusters. Mainly clustering 

advantages are for those who have access to power consumption data such as DSOs, aggregators and 

other decision support systems who are responsible for instant operations and fast decision making. The 

first surveys have been done by utilities, system operators and researchers, using the monthly usage and 

some fixed information (e.g. voltage levels, demand) categorized households and load profiles based 

on the following classes: demographics and socio-economic factors, dwelling characteristics, habits 

(e.g. consumption timing), energy conservation, energy efficiency goals, knowledge about electricity 

consumption and the attitude of use. Presently, data and detailed measurements for more than tens of 

thousands end-users are available and accessible. The stages of load pattern clustering are presented in 

the following diagram, which are analysed in [2]. 

 

In simple terms, the load profile data are collected in order to be processed and if needed repaired any 

missing data. Then, the input data are scaled down to obtain features that are necessary for the 

customers’ customization. Moving to the clustering stage, methods and algorithms are applied on load 

patterns for accurate parameters selection and have the optimum outcome. The clustering performance 

assessment essentially ensures that each cluster is unique and well separated from other clusters. A post 

processing analysis for the generated clusters is done at the ‘formation of customer classes’ stage, which 

is based on real-life cases, such as cluster-specific tariffs or DR programs. The final stage is where the 

retailer or DR aggregator will apply those clustering results. 

The major clustering methods as described below: 

 

 Hierarchical clustering groups data, simultaneously over a variety of scales, by creating a 

cluster tree. The tree is a multilevel hierarchy, where clusters at one level are joined to clusters 

at the next level. 

 

To perform hierarchical clustering, it is necessary to find the similarity or dissimilarity between 

every pair of load profiles in the data and then group them into binary clusters based on the 

previously computed similarity matrix. The process is iteratively repeated by merging the 

clusters of each level into bigger ones at the upper level until all samples are grouped into 

expected clusters. The advantage of this method is that the original data is kept unchanged in 

the root of the cluster tree. 

 

 K-means clustering method groups load profile data by determining a certain number of 

clusters and a centre point for each cluster. After determining the centre point of each cluster, 
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each data set should be assigned to the nearest centre point then a recalculation of the new 

centre point will be done iteratively until the position of the centre point is stable. 

 

 Fuzzy C-means Clustering is similar to standard K-means, the difference is that each data set 

has a degree of membership to each initial cluster (i.e. each data set belongs to all clusters to 

some degree). The degrees of membership for each data set to all clusters should sum to one. 

Firstly, the number of clusters and guessing the cluster centre point (most likely incorrect), 

which is intended to mark the mean location of each cluster is selected, then every dataset is 

assigned a membership grade for each cluster. The next step is updating each cluster centre 

point and membership grade iteratively until the position of the centre point is constant. In this 

step the cluster centre point moves iteratively to the correct position within the data sets. The 

Fuzzy C-means clustering technique does not create boundaries between data sets for the first 

iteration, because the clustering process involves all data. The boundaries will automatically 

evolve when the clustering process is completed. 

 

 Spectral Clustering algorithm is a graph based algorithm that exploits the utilization of an 

adjacency matrix that describes the similarity distance between two energy assets in order to 

identify clusters through the extraction of the Laplacian analysis (eigenvalues) of the former 

table [32]. 

 

 Gaussian Mixture Model (GMM) is a probabilistic approach that applies soft clustering 

separation, focused on identifying a mixture of Gaussian Distributions. Each distribution 

represents a cluster center identical to KMeans that is expressed from the mean value, the 

covariance and its size. Hence, this algorithm identifies the matching probability of each data 

point to the corresponding distribution through Expectation-Maximization algorithm [35]. 

 

 

The following table shows some well-known clustering techniques that are utilized for customer 

segmentation in power systems [30]. 

 

Table 1. Clustering techniques used for power systems. 

Clustering Techniques References Definition 

K-means (KM) [3] [4] [6] [7] [8] [9] [10] [5] 

Variations of K-means including K-

medoids, K-medium and Fuzzy C-

means (FCM) 

[4] [10] [9] [11] [12] [13] 

[14] 

[11] [14] 

Adaptive K-means [15] [16] [17] [17] 

Hierarchical (H) [3] [4] [6] [10] [12] [15] 

[18] 

[5] 

Self-Organizing Maps (SOM) [4] [19] [8] [20] [12] [21] [12] [21] 
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Modified Follow the Leader (FDL) [3] [22] [23] [22] 

GMM - Expectation maximization 

(EM) 

[24] [25] [13] [24] 

Online clustering/ parallel clustering 

divide and conquer 

[16] [17] -- 

 

Spectral Clustering 

[32][33][34] [32] 

 

The selection of the algorithms depends on the available data, for example, the number of clusters are 

necessary to be pre-determined for the K-means, Fuzzy K-means, whereas hierarchical, adaptive k-

means and modified Follow the Leader do not require this parameter. In addition, hierarchical is the 

only method that does not require an iterative process, however, it does generate boundaries between 

data sets, as well as K-means and Follow the Leader. On the other hand, Fuzzy K-means and Fuzzy 

relations do not create boundaries. Moreover, the suitability of distance measures varies for each 

algorithm (e.g. the most used measure for K-mean is L2 norm, for K-medoids L1 is minimized). 

Therefore, the computation time and the complexity for each technique is different. Another comparison 

between these methods is the trial and error approach which is applicable for the Follow the Leader 

and Fuzzy relation, but for hierarchical, K-means and Fuzzy K-means is not [29]. 

 

Table 2 below shows the most common data sets where clustering techniques are used [30]. 

 

Table 2. Clustering application on time-series, features, or reduced data set. 

Method Examples References 

Raw consumption (time series) 

data 

-- [8] [9] 

Feature Definition: Data that are 

defined by the user, based on 

load shapes and specific 

application 

Load factor; daily Pav,day/Pmax,day 

mean; standard deviation; 

skewness 

[25] [26] 

Feature extraction: Extracted 

data from load shapes, use of 

techniques (e.g. frequency 

domain analysis) 

Discrete Fourier Transform 

(DTF); harmonics-based 

coefficients; discrete wavelet 

transform 

[23] [27] 

Data size reduction: Obtained 

from the original data 

Principal component analysis 

(PCA); Sammon map; 

symbolic aggregate 

approximation (SAX) 

[17] [28] 

 

Another comparative analysis for clustering techniques was done in [31], where the taxonomy of 

clustering approaches was detailed, explained with their variants and their similarities, and finally 
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evaluated based on certain criteria. The table 3 below outlines some of the general outcomes of this 

comparative analysis [31]. 

 

Table 3. Comparative study of some clustering algorithms. 

Category 

of 

Clustering 

Algorithm 

name 

Time 

complexity 

Scalabilit

y 

Suitable 

for large 

scale data 

Suitable for 

high 

dimensional 

data 

Sensitive of 

noise/outlier 

Partition K-means Low O(knt) Middle Yes No High 

 PAM High O(k(n-

k)^2)) 

Low No No Little 

 CLARA Middle 

O(ks^2+k(n-

k)) 

High Yes No Little 

 GMM+EM O(nk^2) Middle Yes Yes Little 

Hierarchy CLARANS High O(n^2) Middle Yes No Little 

 BIRCH Low O(n) High Yes No Little 

 CURE Low 

O(s^2*logs) 

High Yes Yes Little 

 ROCK High 

O(n^2*logn) 

Middle No Yes Little 

 Chameleon High O(n^2) High No No Little 

Fuzzy 

Based 

FCM Low O(n) Middle No No High 

Density 

Based 

DBSCAN Middle 

O(n^logn) 

Middle Yes No Little 

Graph 

Theory 

CLICK Low 

O(k^f(v,e)) 

High Yes No High 

Grid Based CLIQUE Low 

O(n+k^2) 

High No Yes Moderate 

 

A brief review of the most used clustering algorithms for customer segmentation, a review of current 

research and possible applications of clustering techniques for power systems were presented and 

discussed in this section. Within the scope of DELTA, advanced clustering/segmentation techniques 

are developed towards delivering a state-of-the-art module that will arrange customers into the DELTA 

Virtual Nodes for fast applications such as dynamic Demand Response. Exploitation of dynamic and 
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static characteristics will allow the dynamic creation and maintenance of the DELTA Virtual Nodes, 

arranging the customers’ portfolio in an optimal manner towards leveraging the overall flexibility 

potential. 

 

 DELTA Segmentation Functional Overview 

The Aggregator’s Energy Portfolio segmentation (AEPS) module is responsible for creating and 

updating large virtual customers DVNs consisting of small/medium customers. 

 

Portfolio segmentation/classification deployment includes: 

 

 Initial allocation of FEIDs into Nodes, similar to the clustering mechanism, utilizing the 

contractual data (e.g. geographical, type of customer, consumption capacity, generation 

capacity, market type). Most common way to achieve the assignment of new customers: 

train supervised classifiers algorithms according to specified strategies using the labels as 

target variables. 

 

 Distribution of FEIDs into Nodes, using the contractual data and the features that are 

extracted from time series data (consumption, generation, flexibility etc.) and the calculated 

reliability and availability profile of the FEIDs. 

 

The following image depicts the workflow of the Energy Portfolio Segmentation/Classification module. 

The component of the segmentation tool receives as input in real time and historical measurements and 

a clustering process is conducted in order to identify FEIDs with similar profiles. In the case of the 

arrival of a new FEID, a classification model designed from unsupervised data is activated and the FEID 

is assigned into one of the existing DVNs. Meanwhile, the Segmentation tool periodically checks for 

changes into the DVNs profiles. Factors that contribute to the alteration of the profile of a cluster can 

be the decision of an Aggregator to change the business model, the addition, the removal or the 

behavioural change of a critical FEID. 

 

 

Figure 1. Aggregator’s Energy Portfolio Segmentation/Classification workflow. 
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 Contractual Data Static Segmentation (CDSS) 
 

 CDSS Methodology  

The CDSS submodule is designed to classify customers (FEIDs) according to their intrinsic 

characteristics. Therefore, it is necessary to examine the contractual features of the already grouped 

assets in order to create a dataset that is oriented to the current structure. In that way, the learning process 

of the classifier recognizes the distinguishing features from the FEIDs’ contractual information and 

links it with the TDDS results that include historical information. 
 

One crucial constraint that affects the initial schema of the aggregator's portfolio is the Geographical 

location of each FEID. This information is represented from the Sector Parameter (Sector1, Sector2, 

etc.). Latitude and longitude of the location of each FEID is discretized in Sector domains according to 

the network topology. Therefore, the aggregator’s portfolio that belongs to a specific Sector is examined 

individually and it is considered as an independent entity in terms of segmentation. In particular, 

location affects the constitution of DVNs, preventing FEIDs from different Sectors to participate in the 

same DVN as it is displayed below. 

 

 

Figure 2. Per Sector Segmentation with Gaussian Mixture Models 

 

 

Support Vector Machines (SVM) algorithm has been selected as the proposed classification method 

regarding its efficiency and effectiveness compared to other tested methods. The SVM algorithm 

focuses on identifying the hyperlane that distinguishes the groups of FEIDs that belong to the same 

DVN, maximizing the margin from the nearest data point of each group. This property incorporates 

scalability and sustainability to the existing ecosystem. 

 

 

Figure 3. CDSS workflow.  
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 Classification Process Initialisation  

In the very early stage, that the aggregator initiates with an energy portfolio that dvns entities have not 

still been formulated, there are no historical data and no indicative labels for our dataset, the CDSS 

submodule distributes FEIDs among DVNs through unsupervised clustering methods over the 

contractual data. 

 

One of the examined clustering algorithms that showed notable results is DBSCAN. The main 

advantages of this algorithm is related to its ability to examine density based spatial distances, 

identifying the appropriate number of clusters autonomously. Two parameters that are of substantial 

importance for the configuration of this property are eps and min_samples parameters. The first one is 

responsible for the definition of the maximum distance between two points that belong to the same  

neighborhood, while min_samples describes the minimum number of points that constitute a cluster. 

The values of these parameters that achieved the most efficient results are eps=0.6 and 

min_samples=10. 

 

Going beyond common clustering approaches that are considered “hard clustering”, such as the 

DBSCAN, and toward providing additional added-value to the DELTA AEPS, the overall approach 

was further enriched following a soft clustering algorithm that is capable of assigning multiple data 

points (FEIDs) to multiple clusters (DVNs). Furthermore, this type of clustering method estimates the 

probability that each data point belongs to a specific cluster or more groups. This property is further 

exploited as a feature that will link temporal re-formulation of the DVNs regarding the balancing of 

DVNs’ reliability. In particular, in the case scenario that clustering results formulate one DVN that is 

very unreliable (the mean reliability of all FEIDs is low), through the aforementioned property of soft 

clustering algorithms, the intersection between two clusters is identified and swaps FEIDs with 

contradictory reliability that belong to an intersection area among two DVNs. This is executed in terms 

of supporting unreliable DVNs and creating in overall more reliable clusters. The following figure 

illustrates this interaction. 

 

 

Figure 4. FEIDs swap for DVNs’ reliability balance 

 

GMM and Expectation Maximization algorithm as a soft clustering probabilistic method is the proposed 

approach. This method differentiates from other clustering algorithms regarding the perspective it 

approaches the problem. This type of Segmentation is not related with the distances of the data points 

with nearest centroids or the spatial density of the data. In particular, it fits a set of k Gaussians 

distribution to the energy profiles and extracts the corresponding parameters, such as mean value, 

variance and weight of the cluster. This method is achieved through the Expectation-Maximization 

algorithm that is an iterative process that identifies the optimal Gaussian parameters.  

 

Selecting the optimal number of generated clusters was examined through the Bayesian Information 

Criterion (BIC). A grid search of the number of clusters over several GMM models extracted the 
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corresponding BIC values. This criterion has been proved effective in model based clustering [36]. 

Lower values of BIC denote higher efficiency, however the key point that contributes to the final 

selection of clusters is the elbow point of the curve. 
 

 

Figure 5. BIC values for several number of clusters 

 
In order to avoid instabilities regarding the initialization points of GMM, the proposed implementation 

attempts to incorporate latest solutions as the initialization point of new fits. This parameterization can speed 

up the convergence of the algorithm and create linkages between the temporal alterations of the aggregator’s 

portfolio schema. As a result, the clustering results are not temporally detached. 
 

This process exploits information about the intrinsic characteristics of each asset and generates larger 

entities with common behaviour. This scenario describes the initial DELTA execution over the first 

customers’ participation.  
 

 

Figure 6. Workflow - Initial formulation of DVNs through unsupervised clustering over 

contractual data. 

 

The CDSS module was applied over the DELTA Aggregator’s portfolio as the primary step of the 

DVNs formulation process. DELTA portfolio consists of 150 FEIDs, that is a mixture of real FEIDs 

installed in a smart home and virtual FEIDs that simulate the behaviour and of real households with the 
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corresponding contractual characteristics. Both the real and virtual FEIDs communicate with 

aggregators and send data in a minutely granularity. The CDSS module over the aforementioned data 

formulated two DVNs, while the estimated silhouette score of the generated clusters is near 0.61. This 

metric indicates that the clusters are well defined, while the groups of FEIDs belong to the same sector 

as well. 
 

 

Figure 7. DELTA DVNs result through the initialization of the platform. 

 

As soon as there are historical measurements recorded to the database about consumption, flexibility 

and DR contribution, the segmentation mechanism (See Section 4.2)  is activated and new DVNs 

formulation is applied. This flow permits aggregators to preserve stability to their portfolio structure 

while re-sharing the assets among the generated DVNs. Configurations over the involved measurements 

can be applied from the aggregator, in terms of identifying the structure that meets its demands. The 

following figures display indicative results from the Segmentation process during the rescheduling 

phase, when historical data have been recorded from the aggregator. They illustrate the daily schedule 

of each FEID and their participation in DVN groups in accordance with some specified measurements.  
 

 

 

 New DELTA Customer Assignment  

In case of a new customer the CDSS is responsible to classify new customers (FEIDs) in one of the 

existing DVN entities. Lack of historical measurements and information about the general profile and 

behaviour of customers leads CDSS module to focus on its contractual characteristics: geographical 

location, consumption capacity, generation capacity, storage capacity, market participation, customer 

type (implicit, explicit) are some of the features that are taken into account in the primary classification 

process. Additionally, hard constraints about the belonging sector of each FEID affect the decision of 

the TDDS module - DVNs consist of FEIDs from the same sectors. In that way, aggregators can 

preserve stability and balance to DVN entities for a short period of time without disrupting their 

functionality. Rescheduling process from TDDS is activated as soon as there are historical records in 

order to make corrective actions. 
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Figure 8: New Customer case that need to be assigned to a DVN. 

 

 

The second scenario that concerns the extension of Aggregator’s energy portfolio, when the initial 

generated DVNs from the TDDS module have been modified and the portfolio has been rescheduled 

with regard to TDSS module as it will be described in Section 4. TDDS reformulation in the existing 

portfolio, modifies the number of generated DVNs, rendering the already designed classification model 

inadequate to incorporate new customers, as it ignores the existence of the total number of DVNs. As a 

result, a new classification model needs to be designed, incorporating the knowledge of the generated 

DVNs. This is achieved through the creation of a dataset that utilizes the labels of the TDDS results and 

the information from the corresponding contractual data of the FEIDs. Thus, the new designed 

classification model combines the inference from TDDS with already the existing information from the 

intrinsic characteristics of each FEID. 
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 Temporal Data Dynamic Segmentation (TDDS) 
 

This section presents the second core module of the AEPS, the Temporal Data Dynamic Segmentation 

(TDDS). The aim of the TDDS is to establish the allocation of the DELTA Virtual Nodes underneath 

the DELTA Aggregator entity. The resources distribution is based on clustering algorithms performed 

at the Aggregator level to the entire portfolio regarding certain characteristics. The main objective of 

this task focuses on creating virtual medium/large clients that can be handled more efficiently and be 

part of a specific demand response strategy. Temporal adaptation and adjustment of DVNs resources is 

supported by the CDSS tool as it rearranges the DVNs autonomously based on indicators infused by 

the Aggregator Architectural Requirements. 

 

Although in principal the TDDS follows the CDSS to design and deliver the DVNs, in the case of a 

new customer (see Section 3.3) the CDSS is employed on top of the TDDS to assign the new customer 

within the most appropriate DVN.   

 

The DELTA Aggregator Portfolio Segmentation’s functional flow is presented in the following flow 

chart. 

 

 

Figure 9: Aggregator’s Portfolio Segmentation steps. 

 

 Data Selection  

The TDDS tool that re-formulates the DVNs is based on several features, either contractual or real time 

and historical measurements, some of which are depicted in Figure 10. Contractual data is static 

information that reflects the capacities and the location of each customer as they are declared in the 

initial contract. Indicative contractual measurements are: consumption capacity, generation capacity 

and storage capacity, customer type, market participation. On the other hand, real time and historical 

measurements that are recorded and examined from TDDS are:  

 load consumption,  

 energy generation,  

 upwards and downwards flexibility,  

 FEIDs’ reliability that represents the credibility that this asset has shown in previous DR 

participation, and 

 FEIDs’ participation that represents the total involvement of each FEID in DR programs.  

 

Data selection and feature extraction process is associated not only with the selected DR strategy and 

the goals that the Aggregator has set, but also with the profile and the needs of the customers. Therefore, 

every customers’ segment requires to be meticulously examined in order to identify these features that 

satisfy both sides. Applied feature engineering techniques over the historical measurements will be 

described in the following section. 
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Figure 10: Contractual and real time measurements. 

 

 

4.1.1 Data Pre-processing  

Data manipulation and adaptation of the data structure with regard to the problem is a matter of 

substantial importance for the design of efficient clustering algorithms. As the structure, the content and 

amount of data affects the quality of clustering results, it requires a good understanding of the problem. 

The proposed methodology comprises three steps, as presented below:   

 

● The primary Data Pre-processing step of TDDS is feature extraction of statistical metrics from 

real time and historical measurements of previous months: - consumption, generation, 

flexibility - Several statistical metrics are calculated for instance: minimum value, maximum 

value, mean value, standard deviation in order to reduce the dimensions of time series data. In 

that way, meaningful information from the latest months is preserved, while at the same time 

the amount of data is tractable for clustering algorithms. It is worth mentioning that outliers are 

detected and removed from the data focusing on a segmentation model that generalizes well 

and is not affected by noise. 

 

● The Fusion of contractual data with the extracted features from historical measurements for 

each customer compose the total amount of data.   

 

● Feature Selection is the following step of TDDS methodology. This step is not independent of 

DR strategy and policy that the aggregator/retailer has established. As the strategy and the 

objectives of the aggregator have been defined, a genetic algorithm implementation runs 

iteratively in order to identify the optimal combination of features and clustering algorithms 

that yield higher clustering results towards the goal. According to that methodology, the feature 

selection process adapts to the objectives and is not a static choice. 
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Figure 11: TDDS structural overview. 

 

The following figure displays statistical values from DVNs with regard to consumption measurement 

during one day in an hourly granularity. Three tables describe the aggregated DVN behaviour of the 

respective generated DVNs in DELTA platform through maximum, mean and minimum metrics. It is 

worth mentioning that two of these DVNs are composed of virtual FEIDs. DVN3 consumption 

behaviour appears to reach its maximum mean value during the early hours in the morning; however, 

the maximum magnitude of consumption appears during the midday period. Moreover, the minimum 

value of the corresponding DVN does not provide any further information, as it follows a steady volume 

near 690 Watts during the whole day. The other two images concerning DVN2 and DVN1, they 

illustrate values on a larger scale. DVN1 reaches maximum mean value during the morning hours while 

DVN2 in the afternoon. Both of these involved DVNs contain more than twenty FEIDs in their energy 

portfolio. 
 



 

H2020 Grant Agreement Number: 773960 

Document ID: WP4/ D4.2   

 

  Page 22 

 

 

Figure 12. DVN statistical hourly measurements regarding min, maximum and mean value. 

 

 Spectral Clustering over Dynamic Warping Time Distance  

Dynamic time warping (DTW) is an algorithm that estimates the distance between temporal sequences 

that may vary in speed. Speech recognition, Vision and graphics are some of the fields that this method 

has been applied to. In terms of the energy aggregator’s ecosystem, there are numerous time series 

measurements that reflect the energy profile of customers. The basic idea of the proposed method 

includes the estimation DTW distance among some high importance time series (forecasted 

consumption, generation) and the application of Spectral Clustering (SC) algorithm in order to generate 

the final segments. 

 

The basic functionality of the SC algorithm is based on the Eigen decomposition of the Laplacian 

matrix of our data. The Laplacian matrix is calculated through the equation:  

 

𝐿 = 𝐷 − 𝐴  
 

where D is the Degree matrix which denotes the connections among the nodes and A is the affinity 

matrix of our data. The affinity matrix is a symmetric matrix that expresses the similarity of each 

FEID’s measurement with the rest of the assets.  

 

The first step of the incorporation of DTW method to our algorithm is to calculate the dissimilarity 

matrix of these measurements. The following step includes the transformation of these distances to 

similarities through the Gaussian Kernel function. In particular, we utilized a specific form of the 

kernel function that adjusts parzen window parameter for optimal results as it is mentioned in [37]. 

The equation of the Gaussian Kernel function is: 

 

  

�̂�𝜄
2 =

max 𝑑(𝑖, 𝑗)2 − min 𝑑(𝑖, 𝑗)2

2 ln
max 𝑑(𝑖, 𝑗)2

min 𝑑(𝑖, 𝑗)2
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Finally, through the decomposition of the Laplacian matrix, we extract the eigenvalues of the selected 

matrix, exploiting the gap between the eigenvalues that facilitates to estimate the appropriate number 

of clusters. 

 

 

Figure 13. Eigen values of Laplacian matrix 

 

 Dynamic DVN allocation  

The TDDS configures and adapts its schema according to real time conditions and modifications to the 

aggregator’s energy resources. Potential causes of rescheduling can be:  

 

 Behavioural alterations of FEIDs 

 Energy assets (FEIDs) addition or removal 

 Special temporal constraints 

 Business plan changes 

 

The former factors can trigger rescheduling processes, formulating a new individual schema consisting 

of several DVNs, with some energy assets (FEIDs) assigned to each one. Selection of clustering 

algorithms and parameterization are two factors that should be taken into consideration, as presented in 

the following subsections.  

 

4.3.1 Segmentation Parameterization 

The identification of the appropriate number clusters and the individual parameters of each clustering 

algorithm that maximize its efficiency is applied through a grid search over several clustering 

algorithms. The evaluation metric that is deployed to validate the segmentation process is Silhouette 

Score. Silhouette Score as a metric examines the coherence of points within clusters and the 

simultaneous separation of this cluster from neighbour segments. As far as the number of clusters 

concerned, clustering algorithms can be divided in two categories: the ones that detect the number of 

clusters autonomously and the ones that the user needs to define the appropriate number. Silhouette 

score is an indicative metric that facilitates the detection of this number regarding the second category 

of algorithms.  

 

4.3.2 Clustering Methods 

In the literature review, as it is presented in section 2.1, there are several clustering algorithms that are 

utilized to distinguish the groups of energy customers in terms of their energy behaviour. Within 

DELTA, baseline algorithms (e.g. K-means) along with more “adaptive” / improved clustering versions 
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have been benchmarked for integration in the final AEPS, results and experiments conducted with 

synthetic data (as explained in the following section) in Chapter 5, where the final selection of the most 

appropriate method is outlined in terms of: 

 

● their scalability as the number of users increases, and   

● their feasibility to generate distinguishable groups of customers. 

 

 

 Dataset 

The study and the results of this report are based on indicative measurements of experiments with 1000 

virtual FEIDs that include historical data of 3 months. These virtual FEIDs have been generated driven 

by the functionality of real houses (profiles taken by actual datasets and third party tools for load 

profiles), in accordance with all DELTA properties. More detailed information about vFEID engine is 

included in D3.4. Some key characteristics of the generated vFEIDs (example provided in Table 4) that 

reflect the structural characteristics of our customers are: 
 

 the 90% of our customers are consumers and only 10% are prosumers 

 80% of our customers are small/medium customers and 20% are tertiary customers 

 the mean reliability of our assets is near 0.85  

 

Table 4. Instance of Quantitative characteristics of the generated DVNs measurements 

Power 

Consumption 

(W) 

Power 

Generation 

(W) 

Consumption 

Capacity (W) 

Generation 

Capacity (W)  

Storage Capacity 

(kWh) 

3902.963 12830 790000 144000 20000 

312.480 5712.2 38000 9000 5000 

3122.8 4608 10000 9570 4500 

7045.039 17136.6 269000 47000 9000 
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 Results  
 

 Spectral Clustering over Statistical Features 

Identifying customers’ segments from individual measurements (consumption, generation) can aid 

aggregators design incentive/price based DR strategies oriented to specific objectives. An analysis of 

clustering algorithms for each time series measurement individually depicts that there is no clear 

separation to all cases as represented below. The Feature engineering step produces 40 statistical 

features like mean value, standard deviation, variation in an endeavour to reduce the dimensionality of 

time-series measurements. Isomap as a dimensionality reduction technique has been applied to data in 

order to be visualized in two dimensions.  

 

Although the tests were applied over several clustering algorithms, the Spectral Clustering method 

showed remarkable results. Five clusters of FEIDs were identified and examined for each measurement 

independently. As it is observed in Figure 14, clustering in terms of consumption measurement 

identifies discernible groups of FEIDs, while the Silhouette score of this segmentation is near 0.76. 

Accordingly, regarding the downwards flexibility measurement, our algorithm achieved the 

identification of five groups of customers, while the Silhouette Score is close to clustering related to 

Consumption measurement with 0.75. On the other hand, generation and upwards flexibility 

measurements could not provide meaningful and discrete and separation of customers behaviour as it 

is reflected from visualizations and the Silhouette Score of 0.32 and 0.51 respectively. It is worth 

mentioning that in the case of generation measurements there are only 200 of 1000 FEIDs that are 

considered as prosumers, therefore there is a reduced number of manageable assets to be grouped.  

 

Figure 14: Consumption, Upwards Flexibility, Generation and Downwards Flexibility 2D 

representation through Isomap. 

 

A general overview of the individual scores for each measurement is presented in the following table 

while Spectral Clustering and DBSCAN algorithms’ results are compared. 
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Table 5. Silhouette score of spectral clustering analysis on different measurements. 

Measurements Spectral Clustering DBSCAN 

Consumption 0.76 0.61 

Generation 0.32 0.30 

Upwards Flexibility 0.51 0.52 

Downwards Flexibility 0.75 0.71 

 

Regarding the analysis of execution time and the feature extraction procedure, this study examines the 

total running time and compares different clustering algorithms for one thousand FEIDs. Spectral 

Clustering algorithm is proved to be the most time-consuming approach, whereas mean-shift requires 

the minimum duration compared to all algorithms. Generally, these algorithms seem to achieve 

scalability, as there is a linear relationship between the number of generated features and the execution 

time that is presented in Figure 6. Specifically, Figure 6 displays a diagram that correlates the execution 

time of each algorithm with the number of generated features. These metrics are estimated as the mean 

value of 15 sequential executions for each method. 

 

 

Figure 15: Execution time per Number of Calculated features for several clustering algorithms. 

 

Furthermore, there are indicative results from statistical measurements that describe a general overview 

of each DVN as it has been deployed after the application of  TDDS. Maximum value, minimum value, 

mean values and standard deviation of each established DVN during the day is displayed in figure 7, 8, 

9 and 10. The temporal behaviour of the members of its group seems to have common characteristics 

and at the same time differentiates from other groups, validating the efficiency of our approach. 
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In the following figure, there are displays of statistical metrics from the generated segments of FEIDs 

in terms of a specified measurement. Regarding the consumption measurement, it is observed that the 

majority of FEIDs in the DVN1 raise their values in the middle of the day with mean value near 1500 

Watts and maximum value 7500Watts, while in DVN2 and DVN3 the involved FEIDs do not surpass 

the 6000 Watts as maximum value and mean value near 750 Watts. The peak of the consumption 

measurement in all the DVNs is observed in the first half of the day.         

 

 

Figure 16. FEIDs’ profiles to DVN0 through consumption measurement. 

 

 

Figure 17. FEIDs’ profiles to DVN1 through consumption measurement.  
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Figure 18. FEIDs’ profiles to DVN2 through consumption measurement. 

 

 

Figure 19. FEIDs’ profiles to DVN3 through consumption measurement. 
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Figure 20. FEIDs’ profiles to DVN4 through consumption measurement. 
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As depicted in the following figures, there are similar displays of statistical metrics from the generated 

segments of FEIDs in terms of the downwards flexibility measurement. DVN0 seems to reach the 

highest magnitude of  downwards flexibility near 10000 Watts, while DVN3 and DVN4 reach their 

maximum mean values in the last 4 hours of the day. On the other side, DVN1, mean flexibility 

measurement surges its value abruptly in the morning and the afternoon periods. Regarding the DVN2 

it reaches. 

 

Figure 21. FEIDs’ profiles to DVN0 through downwards flexibility measurement. 

 

 

Figure 22. FEIDs’ profiles to DVN2 through downwards flexibility measurement. 
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Figure 23. FEIDs’ profiles to DVN4 through Downwards Flexibility measurement. 

 

Accordingly, there are similar displays of statistical metrics from the generated segments of FEIDs in 

terms of the Upwards flexibility measurement. Maximum values of DVN1 tend to increase steadily its 

values during the day, reaching their peak of 6000 Watts in the afternoon, while DVN2 has two intensive 

periods of high upwards flexibility values during the morning and the afternoon. As far as DVN3 

concerned, the biggest proportion of FEIDs raise their flexibility values in the morning hours and then 

preserve a steady volume of flexibility until the latest hours of the day.  

 

 

Figure 24. FEIDs’ profiles to DVN0 through upwards flexibility measurement. 
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Figure 25. FEIDs’ profiles to DVN2 through upwards flexibility measurement.  

 

 

Figure 26. FEIDs’ profiles to DVN3 through upwards flexibility measurement.  
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Figure 27. FEIDs’ profiles to DVN4 through Upwards Flexibility measurement. 

 

Another graphical representation of the temporal scheduling of aggregator’s portfolio is illustrated in 

Figure 24 and Figure 25 that denotes the differentiation of individual clusters with regard to a specified 

measurement. Figure 24 highlights the correlation between consumption and generation in an indicative 

scatter plot, while Figure 25 examines the relationship between consumption and upwards flexibility. 

Some of the observations that have been recorded are: the fact that customers with higher loads of 

consumption and generation during the day are located in DVN1, while consumption in DVN0 is 

increased solely at 20:00. Subsequently, DVN0 contains FEIDs that are small-medium customers, 

whereas DVN1 has customers of larger scale.   

 

 

Figure 28. DELTA DVNs Segmentation schedule through Consumption and Generation 

measurements.  
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Figure 29. DELTA DVNs Segmentation schedule through Consumption and Flexibility 

measurements.  

 

Some of the findings during the implementation of this engine are expected to be further elaborated and 

exploited through the integrated DELTA framework and during the pilot deployment. 

 

 Spectral Clustering over DWT   

The results regarding Spectral Clustering over DWT are divided in two temporal continuous periods. 

Segmentation process applied for each time period was examined individually. In that way, it is possible 

to study the effects of measurement transformation regarding the formulation of the DVNs schema. 

 

In order to discover the optimal number of clusters that segmentates the energy profiles with the most 

effective way, an estimation of the Silhouette Score and the Davies Bouldin Index score [38] was 

applied. In the following diagram and the corresponding table, there is a display of these two metrics in 

correlation with the number of clusters. It is discernible that the optimal point is the 5 clusters that 

maximize the Silhouette Score and minimize Davies Bouldin Index. 

 

 

Figure 30. Silhouette Score and Davies Bouldin Index Diagrams 
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Table 6. Silhouette Score and Davies Bouldin Index Per number of Clusters 

Number of Clusters Silhouette Score Davies Bouldin Index 

2 0.349422 0.91 

3 0.48076 0.73 

4 0.62461 0.6628 

5 0.80452 0.3173 

6 0.71771 0.3141 

7 0.72245 0.2780 

8 0.7053 0.26802 

9 0.6473 0.2742 

10 0.62704 0.26203 

11 0.546 0.270 

 

 

The following figures display a representation of the Forecasted Energy Consumption of each FEID in 

a specific cluster DVN with 15 minutes sampling. The following DVNs that are illustrated for both time 

periods are a subset of the total number of generated DVNs as the optimal number of clusters was five 

clusters for both periods. 
 
All of the FEIDs measurements appear to oscillate with high frequency. This fact denotes that the 

examined period is a peak period with active occupants in the majority of the houses. The most active 

DVN is DVN3, while the most FEIDs are located in DVN2. DVN4 appears to be inactive, until the 

latest part of the period that some FEIDs surge their loads. 
 

 

Figure 31. DVN1 - Cluster, Per FEID Forecasted Consumption in time period1 
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Figure 32. DVN2 - Cluster, Per FEID Forecasted Consumption in time period1. 

 

 

Figure 33. DVN3 - Cluster, Per FEID Forecasted Consumption in time period1 
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Figure 34. DVN4 - Cluster, Per FEID Forecasted Consumption in time period1 

 

 

In terms of the second time period, it is discernible that all the loads decline abruptly in the first part. 

This fact denotes that during this period many customers reduce their loads and the occupancy level of 

households is low. DVN1 and DVN3 seem to have identical consumption behaviour but in different 

magnitudes, while DVN2 and DVN4 have a surge that lasts for a short time period. Finally, the FEIDs 

are shared among the DVNs in a balanced way. 

 

 

Figure 35. DVN1 – Cluster, Per FEID Forecasted Consumption in time period2. 
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Figure 36. DVN2 – Cluster, Per FEID Forecasted Consumption in time period2. 

 

 

Figure 37. DVN3 – Cluster, Per FEID Forecasted Consumption in time period2. 
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Figure 38. DVN4 – Cluster, Per FEID Forecasted Consumption in time period2. 
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 Conclusions 
 

In conclusion, ΑEPS is a demanding task that can solve several problems for aggregators in the modern 

distributed energy systems that require a small and medium customer level analysis and management 

of their energy assets. This report described a concrete methodology to pre-process, analyse and 

segment the spatio-temporal behaviour of customers in accordance with the properties of DELTA 

project and additionally a way to incorporate new customers in an already grouped energy system. 

Furthermore, this task examined several clustering algorithms with regard to scalability and efficiency 

towards identifying meaningful patterns. Spectral Clustering algorithm showed remarkable 

performance in terms of clustering efficiency especially with the incorporation of DWT distance; 

however, it appeared to have some weaknesses related with the execution time compared to other 

methods. Despite the lack of existing applied architectures similar to DELTA that reduce the possible 

test scenarios, TDDS and CDSS are data oriented approaches that provide flexibility to aggregators to 

adjust the methodology according to the adopted Demand Response business plan. Finally, applied 

feature engineering techniques for the extraction of statistical measurements is a topic that needs to be 

further explored in terms of scalability. 

 

The tool developed through T4.2 and reported here has been integrated within the DELTA Aggregator’s 

Decision Support System towards enabling the addition of small and medium customers to the DR 

programs management. By creating larger virtual entities that can be handled dynamically it is possible 

to address small bits of untapped flexibility potential from numerous small and medium stakeholders, 

hence delivering larger sums that are prerequisites to the current DR markets. Real-life evaluation of 

the ΑEPS is expected through the DELTA pilots deployment and evaluation activities within WP7.  
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