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Executive Summary 

The role of electricity is expected to increase in the coming decade. The EU long-term vision to 2050 

contains in all scenarios high end-use electrification which would see the share of electricity in final 

energy consumption grow to 53% by 2050, from 20% in 2018 of electricity in final energy consumption 

share. The need for a more adequate system has enhanced the importance of a flexible system both on 

the generation and demand side. Flexibility of consumption in some member states has been explored 

mostly in the Industry sector, taking advantage of their large power assets and predictable load profiles. 

There is however, a huge potential if the service and residential sector is explored. The fact that services 

and the residential sectors could be explored, smaller assets would be targeted. This implies many 

challenges, such as requiring accurate load forecasts, interaction with the assets, coordination, 

settlements, service tracking and interoperability just to mention a few. The Delta architecture tackles 

these issues and provides a solution to facilitate many of the tasks being performed by the Aggregator 

as an actor. One of the tasks is to understand when (market, settlement period) and what (assets, power) 

to bid in order to maximise potential revenues. 

 

The importance of price forecasting has gained attention over the last few years, with the growth of 

Aggregators and the general opening of the European electricity markets. Market participants manage a 

tradeoff between, bidding in a lower price market (day-ahead), but with typically higher volume, and a 

lower volume market but with potentially higher returns (Balance energy market). Companies try to 

forecast the limits of revenues or prices, in order to manage risk and opportunity, assigning their assets 

in an optimized way. It is thought that in general, electricity markets have quasi-deterministic principles, 

rather than being based on speculation, hence the desire to forecast the price based on variables that can 

describe the outcome of the market.  

 

Many studies address this problem from a statistical approach or by performing multiple-variable 

regressions, but they very often focus only on the time series analysis. In 2019, the Loss of Load 

Probability (LOLP) was made available in the UK for the first time for the full year. Taking this 

opportunity, this report focusses on five LOLP variables (with different time-ahead estimations) and 

other quasi-deterministic variables, to explain the price behavior of a multi-variable regression model. 

These include base production, system load, wind and solar generation, seasonality, day-ahead price and 

imbalance volume contributions. Three machine-learning algorithms were applied to test for 

performance, Gradient Boosting, Random Forest and XGBoost. The latter has a higher performance and 

so implemented for real time forecast. The model returns a mean absolute error (MAE) of 7.89 £/MWh, 

a coefficient of determination (R2 score) of 76.8% and a mean squared error (MSE) of 124.74. The 

variables that contribute the most to the model are the Net Imbalance Volume, the LOLP (aggregated), 

the month and the De-rated margins (aggregated) with 28.6% with 27.5%, 14.0%, and 8.9% of weight 

on feature importance respectively. 

 

The goal of the report is to explain how the model can used as a support tool in the bidding strategy of 

an aggregator combining both modelling and statistical analysis to determine the higher price periods or 

the peaks of the day where the flexibility of a portfolio could be allocated. 
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 Introduction 

1.1 Scope and objectives of the deliverable 

This deliverable is associated with Task 4.3 of the DELTA project and provides the modelling results 

of the price forecast techniques applied to the Balance Energy Market in the UK. Both Cyprus and UK 

pilot sites are the focus of the task, however since the Cyprus context cannot yet provide market data 

for the modelling activity due to its immature state, the study was developed only based on the UK data 

and context. 

 

This report focusses on five LOLP variables (with different time-ahead estimations) and other quasi-

deterministic variables, to explain the price behavior of a multi-variable regression model. These include 

base production, system load, wind and solar generation, seasonality, day-ahead price and imbalance 

volume contributions. Three algorithms were explored: 

 

1. Gradient Boosting 

2. Random Forest; 

3. Extreme Gradient Boost; 

 

The latter presents a higher overall performance and so implemented for real time forecast. The model 

returns a mean absolute error (MAE) of 7.89 £/MWh, a coefficient of determination (R2 score) of 76.8% 

and a mean squared error (MSE) of 124.74.  

 

1.2 Structure of the deliverable 

The work presented in this deliverable is structured as follows.  

 

 Chapter 2 presents the context and state of the art in forecasting markets  

 Chapter 3 introduces the methodological steps during the study, the details about the market in 

the study, which is focused on the UK reality, explaining some basic concepts about the Energy 

Balance Market and explains the LOLP variables. It focuses on the Net Imbalance variable 

mitigation technique, using queries to the historical dataset and the decomposition by quantiles. 

 Chapter 4 introduces the decisions regarding data treatment, hyper parameters optimization, 

libraries used and the real data acquisition. It shows the results of the three algorithms used 

considering different metrics and variable impact. It also promotes a discussion on the use of 

the model and its shortcomings as it presents the results for a test day (based on real data 

acquisition) showing how a decision could be made to choose the best settlement period to 

allocate flexibility 

 Chapter 5 concludes the report, stating the metrics and feature importance of the main variables  

 

1.3 Relation to Other Tasks and Deliverables 

The main achievement of this report is the delivery of modular service related to DR-related pricing 

forecasting that will be part of the DELTA Decision Support System (T4.4). The service will specifically 

be used by the Aggregator’s DSS towards identifying dynamically the optimal decision for participating 

within the imbalance market with the available flexibility using demand-response schemes. The inputs 

for this task were from the market itself, specifically from the ELEXON site. Elexon is responsible for 

the Balance Market and the Nord Pool site which runs the leading power market in Europe, offering the 

day-ahead and intraday markets. 
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2.  Legal and Overall Framework 
 
Over the past five years, the EU has made continuous progress in completing the internal electricity 

market, with most of the EU’s borders and prices under market coupling, while increasing the 

interconnectivity with the periphery, including the Baltics, Turkey and North Africa. The EU has 

upgraded its market design to prepare it for the power system transformation it is experiencing. The 

institutional structures are in place to ensure harmonized network codes and rules for cross-border 

trading, along day-ahead, intraday and balancing market time frames, as well as enhanced system 

operation and security of supply rules. The Clean Energy Package (CEP) [1] was adopted in 2019 and 

has codified these new rules for the wholesale market architecture and as so the full implementation of 

the CEP has only just started. According to the IEA [2] it will bring along greater flexibility, including 

at the retail market level, allowing active consumer participation, greater distributed energy deployment 

and demand response. The new electricity market design in the EU is an inspiration for many large 

regional electricity markets around the world, and a source of many lessons learned and best practices 

in wholesale market integration. In no other region of the world do cross border electricity grids 

contribute so significantly to system integration of variable renewable generation as in the EU. With 

energy storage, Demand Response (DR), energy communities and Aggregators being now a reality there 

are new opportunities for market participation and to generate profits 

 

The role of electricity is expected to increase in the coming decade. The EU long-term vision to 2050 

[3], considers in all scenarios high end-use electrification which would see the share of electricity in 

final energy consumption grow to 53% by 2050, from 20% in 2018 of electricity in final energy 

consumption share. Figure 1 shows the trend of final electricity consumption by sector in the EU. 

 

 

Figure 1. Total Electricity consumption by sector in the EU, 1990-2017 [2] 

 

Generation adequacy moved towards a resource adequacy concept, among others to include demand 

side management. Flexibility of consumption in some member states has been explored mostly in the 

Industry sector, taking advantage of their large power assets and predictable load profiles. There is 

however, a huge potential if the service and residential sectors are explored. Figure 2 shows what space 

demand response and smart charging could occupy, when providing services to the grid, especially to 

grid constraint management (procured by DSOs), but also to other users such as Aggregators, to satisfy 

or complement their portfolios, or BRPs. The fact that services and the residential sectors could be 

explored, smaller assets would be targeted. This implies many challenges, such as requiring load 

forecasts, interacting with the assets, coordination, settlements, service tracking and interoperability just 

to mention a few. The Delta architecture tackles these issues and provides a solution to facilitate many 

of the tasks being performed by the Aggregator actor. One of the tasks is to understand when (market, 

settlement period) and what (assets, power) to bid in order to maximise the revenues.  
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Figure 2. Flexibility needs increase across a larger portfolio of services and time frames [2] 

 

Market forecasting in order to optimize resources and revenues are now in the forefront of research and 

discussions for power generators, power purchasing parties/consumers and regulators alike. Besides the 

dynamic and highly complex traded value of electricity as a commodity, which is subject to multiple 

intrinsic and extrinsic variables, trying to predict the market with a high degree of confidence has many 

benefits for all market participants. Such benefits arise from setting up their respective risk-adjusted 

bidding strategies and ensuring cost-optimal generation activities, to formulating evidence and insights 

on the economic development of a country’s power sector, as well as ensuring the reliable security and 

safe operation of the whole electricity system [4], [5]. In order to maximize profits, market participants 

employ forecasting tools with different time horizons based on the different markets they are operating 

in. These typically vary from half-hourly or hourly settlement periods (real-time, balancing markets, 

imbalance exposure) to months ahead in the wholesale markets (intraday, day-ahead, spot, derivative 

markets) similar to those of a commodity.  

 

Market participants are faced with a number of risks, including the constant requirement of maintaining 

the supply-demand equilibrium, the short-term inelastic demand, and the generation and load side 

uncertainties in the system. Moreover other quantifiable and non-quantifiable factors also introduce risk, 

such as fuel prices, cost of unit operation, the markets design and requirements and also the impact of 

weather conditions, just to mention a few. Other uncertainties regarding the complex process of 

forecasting the electricity price include extreme volatility, high frequency and price spiking behavior, 

non-constant mean and variance as well as multiple seasonality [6], [7]. 

 

In this context a plethora of studies has been developed over the years, in order to address the compound 

implications of electricity price forecasting. Aggarwal et al. (2009) [6] published a comprehensive first 

of its kind market forecasting review of 47 articles. It focused on the quantitative methodological 

approaches undertaken, and distinguished them based on the type of the models and their architectures, 

the input and output variables used, the prediction horizon of the forecasts, as well as the preprocessing 

and the exploratory analysis of the data and the results. According to the authors, the employed 

techniques were found to be similar to load forecasting models and were broken down into a) game 



 

H2020 Grant Agreement Number: 773960 
Document ID: WP4 / D4.3   

 

  Page 11 

theory models including stochastic and parsimonious models, b) time-series models, which incorporated 

artificial intelligence and neural-network based algorithms, and finally c) simulation techniques which 

accounted for regression or other causal models. The input factors which could have an impact on the 

electricity prices were grouped into: a) market characteristics (historical generation, supply, load etc.), 

b) nonstrategic uncertainties such as forecast load and reserves or weather parameters, c) other stochastic 

uncertainties such us generation outages and transmission congestions/contingencies, d) behavior 

indices which referred to historical price data, demand elasticity and market participants’ bidding 

strategies, and e) temporal effect such as settlement period, day, month, public holidays, seasons etc.  

 

The study’s in-depth analysis, found that the time of the day variable and the more complex to model 

bidding strategies factor, were the most significant, suggesting a mathematical equation, which would 

also incorporate an additive residual term. This term intends to reflect the load and supply deviation 

from normally and randomly correlated short-term effects in the market. Despite their very systematic 

approach, they concluded that there was no systematic evidence of one model outperforming another on 

a consistent basis mainly due to the illiquidity and general paucity of historical electricity market data. 

The study also reported that some methods, i.e. multivariate dynamic regression, transfer loss models 

and nonlinear neural-network models, performed qualitatively better compared to univariate 

autoregressive integrated moving average (ARIMA) ones. However, the latter in combination with 

fuzzy logic or a wavelet transformation approach could hold promise in future developments. An even 

more comprehensive review of hundreds of relevant articles, proceedings and journals in the literature 

by Weron (2014) [8], suggested the categorization of models into similar categories shown in Figure 3. 

The main difference is the addition of the structural or fundamental models, which derive from the 

modelling of significant economic and physical factors in the power systems as well as hybrid solutions 

of the following techniques in the sub-branches. 

 

 

Figure 3. Taxonomy of electricity price forecasting approaches based on [8] 

 

The author highlights in great detail the flexibility of multi-agent models [9]–[11][12][13], [14][15] with 

regards to the analysis and incorporation of the multi-dimensional strategic behaviors of the market 

participants as variables and agents. At the same time, this is one of the main caveats of this family of 

models since the underlying assumptions used in the model simulations introduce a lot of risk and 

uncertainty (i.e. a power generator can be either a buyer or a seller depending on his position or strategy). 

Evidence in the literature, also shows that another constraint of agent-based models is the prediction 
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accuracy of the electricity price as an output variable, since the outcomes of such models have more 

qualitative implications (i.e. whether prices will be above marginal costs or not) rather than quantitative 

[8]. With regards to fundamental models, these are considered to be more suitable for medium-term 

forecasts and not so much for short-term predictions, due to data availability and resolution. Due to the 

nature of the fundamental data used on plant and transmission capacities and costs, they tend to overlook 

the hourly or half-hourly resolution, of the data needed in the case of short-term price forecasting, hence, 

they seem to be a better fit for describing market fundamentals. On a similar note, another challenge 

they face is their sensitivity to violations on significant assumptions made on the economical and 

physical relationships of the power entities of the market, therefore their optimization and calibration 

tend to be rather complex when incorporating stochastic fluctuations of fundamental factors. Similarly, 

purely reduced-form models, such as mean-reverting jump-diffusions and Markov regime-switching 

models [16]–[22] are expected to perform better on a daily horizon level and less well on an hourly or 

half-hourly short-term basis as evidence proves their poor performance [23], [24].  

 

However, a hybrid model combining both a Markov-regime switching technique and vector auto 

regressions in a more macroeconomic context, as suggested by some authors [25] might turn out to be 

more effective. When reviewing the statistical methods employed in the literature, Weron (2014) [8] 

refers to the importance of the quality and efficiency of the methods used, highlighting the ability to 

incorporate filtered, and well-tested fundamental historical data (i.e. during normal days without unusual 

price movements or spikes). Many discussions have been promoted around the ability of statistical 

models to capture price volatility and sudden spikes and whether data should be filtered with a more 

comprehensive exploratory analysis of outlier detection prior to the application and comparison of the 

different methods. The majority of the literature however, tends to agree that they perform rather poorly 

to this extent making clear the substantial impact that extreme observations might have on the outcomes 

of a study and that an adequate stochastic model is essentially more suitable for detecting those price 

spikes. Many different methods have been suggested in the literature for addressing the issue of 

capturing those sudden price movements. These include variable price thresholds, regime-switching 

classification approaches, wavelet filtering and transformation techniques, recursive filters, and fixed 

price change thresholds which seemed to be the worst-performing method discussed, due to its inability 

to capture the long-term seasonal behavior of the market prices [16], [17], [24], [26]–[30].  

 

Additional literature suggests the replacement of those spiky instances with various methods. These 

include finding instances in the historical data with similar patterns, taking the average/median of 

periods with matching temporal attributes such as the hour, the day, the month; replace spiking values 

with a chosen threshold; or simply deriving the mean of neighbouring settlement periods and essentially 

prices [18], [24], [31], [32]. With regards to artificial intelligence-based, non-parameter/linear 

techniques employed in the literature, there is a vast pool of them with both strengths and weaknesses. 

On one hand, they are found to be very flexible, powerful tools able to capture non-linear parameters, 

and potentially evolution and fuzziness making them more capable of adapting to complex dynamic 

systems and constraints. On the other hand, there is no systematic evidence they clearly outperform the 

previous families of models [8]. Their rich and complex architecture makes them hard to compare 

thoroughly, and the calibration of each one of them is so unique that it makes it very challenging to 

establish a common basis for comparison.  

 

However, the combination of multilayer perceptron architectures into hybrid models with multiple types 

of neural networks such as long short-term memory, convolutional neural networks, or recurrent neural 

networks, or other types of algorithms such as clustering, ARIMA, trigonometric seasonal box-cox 

transformation, residuals trend and seasonal components approaches, show potential for useful and 

robust forecasting tools [4], [5], [33]–[35] primarily for day-ahead and spot markets. Less attention has 

been paid to the forecasting of real-time, balancing prices employing hybrid approaches again such as 

ARIMA and exponential smoothing approaches, and other combinations of multi-layer artificial neural 

networks perceptron with interfering deterministic and probabilistic techniques [36]–[39]. 
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Across all of the literature, a key point for predicting electricity prices is the selection of the dependent 

variables, the predictors. Apart from seasonal attributes, which are easily derived from the temporal 

nature of the output variable (price), there is strong evidence for the fundamental factors that drive the 

price. These include system loads (demand, consumption and generation), climatic and weather 

variables, fuel costs, reserve margin variables such us surplus or deficit of generation, and most recently 

the data around planned maintenance or forced outages of plant trips [8], [19], [40], [41]. The 

aforementioned data however, is not always available or found to be significant, as shown in an 

indicative report for the United Kingdom (UK) market by Maciejowska [42], who used structural vector 

autoregressive models, in order to capture speculative electricity shocks. The study highlighted that 

expected major drivers such as wind generation and supply and demand, were not the ones explaining 

the extreme volatility of prices in earlier years. Even though the majority of the literature selects a 

combination of the main fundamental drivers of prices [43], there is not an optimal, fit-for-all, set of 

variables that can be established for all power markets. This is because the model category described in 

the previous paragraphs, the calibration and availability of the data as well as the objective of the 

research questions, need to be further explored in order to extract the most effective, minimum set of 

input variables that will not lead to under or over-fitting issues [8].  

 

The literature review indicates that, price forecasting has gained a renewed attention, given the growing 

trend of aggregation activities and the market opening to demand response service providers. The main 

motivation remains the maximisation of revenues, taking advantage of the day-ahead (DA) and the 

Balance markets’ most favourable moments. Aggregators manage portfolios of flexible assets, which 

given their finite available power, need to be assigned to the most advantageous settlement period (SP) 

and market, hence the need to predict the price. 

 

This study presents the development of a multi-regression model, testing three machine learning 

algorithms, Gradient Boosting (GB), Random Forest (RF) and Extreme Gradient Boosting (XGBoost), 

presenting a combined approach of several categories according to Aggarwal et al. 2009 [6] 

classification. Market historical data is used for generation, supply, load, temporal effect such as 

settlement period, day, month, holiday, season and nonstrategic uncertainties, such as forecast load and 

probability of reserves plus generation to meet demand. For this latter variable, the Loss of Load 

Probability (LOLP) is used with different time horizons to capture this uncertainty. The model is a tool 

for short term forecasting, which can be used from 12 h ahead up to 1h before the gate closure. With 

resource adequacy methodologies being implemented and several metrics becoming available for the 

security of supply, value of loss load, loss of load expected and LOLP, new analysis are possible. In 

order to conduct the analysis, the ELEXON Balancing Energy Market in the UK is considered. To the 

best of our knowledge such approach has not been taken before, since the first full year with LOLP data 

included in this model, has only just become available for the year 2019. 
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3. Background and Data analysis context 
 

3.1. Balancing Market functioning 

In Europe, electricity markets in different zones or member states (MS) may still differ in their rules, 

terms and operation, but may also be typically found as sequence of year-ahead, month-ahead, day-

ahead, intra-day markets and at the very end the energy balancing market (also called Imbalance 

Market). However, the design of the balancing market is more sophisticated, as it lies at the junction of 

financial transactions (the power market) and physical exchanges (the power system). It is the last 

opportunity for all parties to state a position (load/generation decrease or increase needs/availability), 

for each settlement period. After this stage only the Balancing Mechanism is left to balance the grid 

close to real time. In order to focus on a specific framework, in this study the UK Energy Balancing 

Market, which is managed by ELEXON [44], is address. ELEXON has the function to administer the 

Balancing and Settlement Code (BSC) and provide and procure the services needed to implement it. 

Essentially, ELEXON compares how much electricity generators and suppliers say they will produce or 

consume, with actual volumes and enables the imbalance settlement by managing the Balancing Market. 

ELEXON serves around 470 market participants and settled around 44 TWh in balancing actions and 

partys’ imbalance volumes in 2018/2019 [45]. The balancing of the Transmission System is under the 

responsibility of National Electricity Transmission System Operator (NETSO), which acts as the System 

Operator (SO) and takes balancing actions. A balancing action is an instruction to a party, in accordance 

with agreed rules, to either increase or decrease generation, or increase or decrease demand. 

 

All parties must submit details of their contracts to the BSC Systems. After the end of the settlement 

period, the BSC Systems compare a party’s contracted (traded) volume, with its metered volume in 

order to determine its imbalance. If a party is in imbalance of its contracted volume then it will be subject 

to imbalance charges. After the energy balance and system balance actions (for system management 

reasons) are taken, adjustments for transmission losses are balanced, a volume-weighted average is taken 

to calculate the energy imbalance price or charge. Parties are first billed for imbalance charges 

approximately one month after the Settlement Day for which the charges were incurred. The BSC 

Systems carry out subsequent Reconciliation Runs over the next 13 months, which update the imbalance 

charges by replacing any estimated data with actual metered data. There are several reasons for 

imbalances, for example suppliers may not always accurately predict demand, or generators may not 

always be able to tightly control their generation as is the case of intermittent generation. In addition, 

problems can arise with transmission lines. The BSC does not require parties to meet their contracts and 

the market trades in half hour Settlement Periods, but the Transmission System must balance at every 

instant. After the Balance Market closes the Balancing Mechanism starts. The minimum capacity 

position is 1 MW. The capacity position is stated in power and minutes and a 1 minute is given for 

ramping up and down the asset. 

3.2. Characterization and Predictors for the UK market 

For the current analysis, the study focusses on the time window between the 1st of January 2019 and the 

31st of December 2019, capturing 17520 observations, corresponding to 30 minutes time intervals. All 

the variables collected are also provided with 30 minutes time intervals, except for the day-ahead price 

given every hour, and so it was duplicated in each SP. The model uses 19 variables: LOLP with five 

ahead-of-time values, five corresponding De-rated Margins (DRM), Settlement Periods (SP), 

Production, Wind and Solar Generation, NIV or Net Imbalance Volume (NetImbVol), Weekdays, 

Months, Day-ahead Price (Price DA) and the Initial Transmission System Demand (Itsd), or simply 

system load. 

 

The innovative part of the study is the focus on the LOLP variable. A LOLP value is a measure of 

scarcity in available surplus generation capacity that the NETSO will calculate for each Settlement 

Period. That is, for a given level of Capacity Requirement (CR) (measured in MW) on the Transmission 
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System, the associated LOLP indicates the probability that there will be insufficient Total Generation 

Capacity (Z) (measured in MW) to meet the CR. There are two types of LOLP values - indicative and 

final. For a given settlement period, the NETSO produces indicative LOLP values from the available 

data at defined lead times (at midday the day before and at 8, 4 and 2 hours ahead of gate closure for the 

SP). BSC parties use Indicative LOLP values as an indication of the level of scarcity anticipated ahead 

of gate closure for a SP. For the same SP, the NETSO produces final LOLP values from data available 

to it, at gate closure. The final LOLP is the best indication of expected scarcity during the SP. The 

Commission Interim Report of the Sector Inquiry on Capacity Mechanisms [46] refers to a calculation 

of a LOLP, as a more sophisticated method to measure generation adequacy. 

 

Pursuant to the said document [46], LOLP quantifies the probability of a given level of unmet demand 

over a certain period of time. The Dynamic LOLP Function Method, is the one used by the NETSO to 

produce Indicative LOLP values from 1 May 2018, and final LOLP values from 1 November 2018. For 

a given settlement period, the dynamic model uses a direct relationship between the available generation 

(Z) and the Capacity Requirement (CR) as shown in Equation 1 [47]. The term Zj is the Combined 

Generation Forecast developed in in Equation 2, where Xj is the Conventional Generation Forecast 

shown in Equation 3. 

 

LoLPj = P(Zj - CRj < 0),                              (1) 

 

Zj= Xj + Wj,                                 (2) 

 

Xj= ∑(GCAPij × AVi),                              (3) 

 

In Equation 3, the GCAPji variable is the Generation Capacity of a conventional generator and AVi is 

an Availability Factor. The variable Wj in Equation 2 is the Total Wind Generation Forecast and CR in 

Equation 1 is the Capacity Requirement. 

 

A crucial variable for any forecasting model is the Net Imbalance Volume. It refers to the resulting 

volume of positions, which were negotiated in the market for each SP. This volume is different from the 

one assigned to each party. A party’s imbalance position is simply its metered volumes compared to its 

contracted volumes. The contracted volumes are adjusted for any accepted bids and offers or delivery 

of Balancing Services. Energy imbalance volume = Energy – (Balancing Services + contracts). This 

results in a positive or negative volume of imbalance. A negative imbalance volume means that a party 

has under-contracted and is therefore short of energy. A positive imbalance volume means that a party 

has over-contracted and is therefore long on energy. The BSC Systems calculate the imbalance volumes 

for all parties for every settlement period. The NetImbVol is normally one of the variables used in most 

models. However, it cannot be a direct input to the model, as it cannot be foreseen ahead of time with 

sufficient accuracy. Another variable used in the model is the Initial Transmission System Demand 

variable (given in MW), which is the system load and refers to an average energy in each of the 48 SP 

of a day. The dataset used in the study is a time series, which was decomposed so as to provide 

information on weekdays and months. The production is kept separated as base generation (Production), 

distinct from Wind and Solar generation, with all values provided in MW. 
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4. Methodology 
 
A multi variable regression was performed using each of the described predictors in section 3.2. The 

dataset initially had 17520 observations. The mean value of the target variable (Price) in the dataset is £ 

41.99 with a minimum and maximum of -88 and +375 £/MWh respectively. Due to its disproportional 

value, such observations would introduce high variance in the model if not removed. For this reason 

they were considered as outliers and removed by applying a >99.75% and < 0.25% quantile exclusion, 

resulting in 17428 observations in the dataset. A summary of the main variables is presented in Table 1. 

 

Table 1. Dataset summary of numeric and target variable considered 

Parameter NetImbVol Production Wind Solar Price Itsd LOLP_12h* 

min -1534.00 0.00 0.00 0.00 -60.00 18209.00 0.00 

25% -226.00 17266.00 2475.00 0.00 27.00 25559.00 0.00 

Std. 314.11 6738.22 2860.97 1933.91 20.94 6426.33 199.08 

mean -40.77 22375.83 4948.92 1256.96 41.65 30538.80 4.37 

50% -28.00 21712.00 4574.00 13.00 40.00 29843.00 0.00 

75% 146.00 26820.50 7069.00 2050.00 55.00 34680.50 0.00 

max 2017.00 44493.00 14090.00 9712.00 136.00 48697.00 19615.00 

* LOLP with a scientific notation of 10-6. 

 

The model is designed to read the real data for the next day and provide a forecast for each SP. For this 

to occur, the model reads the forecasted predictors directly from the ELEXON website. This was 

possible for all variables except the NIV of each SP, which due to the uncertainty of maintenance, 

shortages of different sorts, failures, and unscheduled interventions is not provided by ELEXON. A 

strategy to estimate the value of this variable was developed, identifying patterns in the historical dataset 

and performing a regression to the quantile decomposition. As it can be observed in the Figure 4 the 

mean, maximum and minimum have high variance during the year and so other variables need be to 

included in the query. 

 

 

Figure 4. Yearly variation boxplot of NIV by month 

4.1. ML Regression for Net Imbalance Volume estimation 

NetImbVol is a crucial metric towards the forecasting of Imbalance Price as one of the highest correlated 

features. However, it is characterized by high volatility and the existence of many imponderables that 

affect its volume. As a result, forecasting this metric has many obstacles that need to be tackled and 

many features that need to be examined.  
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NetImbVol as a definition is the volume of the overall System energy imbalance for a specified 30 

minutes Settlement Period. One of the possible approaches for the estimation of forecasted values for 

multiple steps ahead includes a recursive multi-step forecasting strategy. Specifically, the designed 

model forecasts the volume for the next settlement period and this information is utilized as input for 

further predictions. Our initial attempts to design a forecasting model included many features as input 

to the model: LOLP (loss of load probability), historical values of Net Imbalance Volume, historical 

Day ahead Market Prices, historical Intra Day Market Prices, weather conditions and  generated features 

related with datetime like working/not working days, holidays, days of the week and months. The data 

that we had at our disposal concerns the year of 2019 with an example show in Figure 5. 

 

 

Figure 5. Yearly variation boxplot of NIV by month 

 

As far as the selected machine learning algorithm is concerned, we chose Extreme Gradient Boosting 

algorithm to design the forecasting model, as a well-tested and time efficient algorithm. The attempt to 

train a deep learning model with the usage of a Long short-term Memory architecture did not accomplish 

to generalize towards our problem, as the model overfits, because of the limited amount of data. 

Furthermore, in the preprocessing phase, we applied Principal Component Analysis over the 0.95 of the 

variance of our data. In that way, we managed to retrieve the principal components of our data, throwing 

away noise and redundant information. Conducted experiments regarding the optimal parameters 

identification in the selected algorithms and features, achieved through grid search and cross validation.  

 

In the effort of achieving higher accuracy, with particular market conditions, as already mentioned 

above, we endeavoured to incorporate more data related with forecasted photovoltaic generation and 

forecasted wind generation that slightly improved the forecasting error, while features like LOLP 

removed, because of their negligible impact on our model. Additionally, a feature engineering technique 

over the NetImbVol time-series data applied in terms of identifying the trend of the previous values. 

The chosen analysis applied a time window of the latest 10 values and estimated a metric that reflects 

the trend of NetImbVol. The results of the aforementioned extensions are presented in Figure 6. 

  

Finally, we managed to incorporate more data from 2018 until the middle of 2020 leading to noticeable 

improvements of the indicative error metrics as they are presented below. However, the model remains 

unstable and inadequate to be exploitable from an Imbalance Price model. 

.   
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Figure 6. Results for NIV estimation through regression 

4.2. Quantile regression for Net Imbalance Volume 

Since the NetImbVol cannot be accurately forecasted, and given the importance provided in the feature 

importance method contributing as the most important variable, this predictor deserves special attention. 

ELEXON has identified that the volume has increased over the last years steadily, however what the 

final value will be, is difficult to predict. Therefore, a range is set on the known predictors that are to be 

tested, and a query will determine the NetImbVol values for those particular observations already in the 

dataset. In practice, the python code resembles a few simple conditional selections as shown in Figure 

7 for clarity: 

 

 

Figure 7. Core code for NetImbVol dataset selection 

 
The above code looks back at historical data from the training dataset and filters the Net Imbalance 

Volumes observed, in days and settlement periods under similar market conditions, (production, 

demand, wind and solar generation). The user is able to set the 'sensitivity/tolerance' search limits in the 

historical data, which will subsequently return a smaller or larger sample/list of historical NIV data for 

each settlement period. As the dataset increases with more historical data (the reason for training the 

model), these limits can be adjusted in an iterative process in order to increase the accuracy. The query 

shown in Figure 5, returns a list of NetImbVol values to which a decomposition of quantiles (5%, 80%, 

90% and 95%) is performed. The resulting sets are then input into the model, one at a time as possible 

NetImbVol values and different regressions are run, one for each of the quantiles. The goal is to 
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incorporate the uncertainty related to this predictor and reflect it in the target variable prediction 

(Imbalance Price). 

 

4.2. XGBRegressor 

When choosing an algorithm, several factors must be considered depending on the problem to be solved. 

These factors can be the pre-processing requirements and, whether it is a time series set of data, or 

accuracy level acceptability. Moreover, the speed of running the model and how fast it is to train, or 

even its complexity, as well as the number of predictors also needs to be considered. In the current case, 

it is a time series with no heavy processing power required. It may take longer to train than to provide a 

prediction. Since the goal is to understand the dynamics and direction of the price, and not so much 

precisely forecast the absolute value of each SP price, we will consider an R2 score to be very low and 

unacceptable if under or 50% but would be very acceptable above 65%. A reasonably high number of 

predictors is being considered with reasonable complexity. Three algorithms were chosen, Random 

Forest [48], Gradient Boosting [49] and XGBoost [50]. The first two were tested but did not perform 

well on variable dependency and accuracy respectively, hence the XGBoost was used.  

 

When compared to RF or GB the feature importance provided by the XGBoost presents larger variety 

of contributions. This is an advantage since the most important variable in the GB and RF algorithms is 

the NetImbVol, which is not predictable. XGBoost is a relatively recent development in machine 

learning, but follows the principle of gradient boosting, containing some differences in modeling details. 

XGBoost uses a more normalized model description to control over-fitting, which usually provides a 

better overall performance. Among all the hyperparameters there are typically five which are known to 

influence the model the most: Number of subtrees to be trained (n_estimators), maximum tree depth 

each tree can grow (max_depth), learning rate, reg_alpha and reg_lambda are regularization terms 

influencing the weight at the leaves and the scattering. 

4.3. Data set Analysis 

To check for variable independence, a correlation matrix was generated and can be seen in Figure 8. It 

can be observed that there is high correlation between some LOLP variables with different time horizons 

and also DRM variables as expected. However, since the model is to be run several times until 1h ahead 

of the closing gate, in order to provide as accurate estimations as soon as possible, the model will take 

into account all of these predictors. In addition, the high correlation between production and demand 

stands out, which is because one should match the other at all times. The reason for keeping both of the 

variables is to capture any deviations between the two, which could exist and maybe have an impact on 

the target variable.  
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Figure 8. Correlation Matrix of input Variables 

 

The dataset can be aggregated and observed in a static analysis with pivot tables, where monthly and 

daily profiles show clear trends. From each box plot, a statistical distribution can be derived and the 

corresponding parameters extracted, if such a statistical analysis approach is desired. Figure 9 shows the 

price variation per month, per SP and weekday, with an example of the price variation for the month of 

June on Tuesdays.  

 

 

Figure 9. Boxplots of Month (left), daily (center) and weekly (right) cycles of prices 

 

By analysing each weekday, the corresponding statistical distribution may be extracted. Figure 10 

provides the example for a given Sunday, SP 32 and the month of June, fitting a gamma distribution, 

and showing also the corresponding parameters describing the distribution. 
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Figure 10. Gamma Statistical distribution with parameters  

 

Regarding the regressions used, a 90% - 10% training and test linear split in time was performed. All 

three algorithms were analysed regarding its feature importance and metrics performance. The real time 

implementation is then developed with the best performing one. 
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5. Results and Discussion 
 
In this study the Randomized Parameter Optimization was used, which is the randomized search cross 

validation (CV) method provided by the scikit-learn [51] library. The hyperparameter tuning is an 

intensive optimization problem, which can take several hours. Two main parameters have to be inserted 

as input for this exercise to be carried out, and these determine its accuracy and runtime: The number of 

iterations (N_iter) and the CV. N_iter is the number of parameter settings that are sampled, trading off 

runtime. The CV determines the cross-validation splitting strategy (for example 3 folds), which prevents 

the model from over fitting. The hyperparameters are provided in Table 2 for each of the algorithms run, 

so that the results can be replicated. 

 

Table 2. HyperParameters used in each algorithm 

Methods HyperParameters 

RandomForrest 
{'n_estimators': 100, 'min_samples_split': 10, 'min_samples_leaf': 2, 

'max_features': 'sqrt', 'max_depth': 90, 'bootstrap': True} 

GradientBoosting 
{'subsample': 1, 'n_estimators': 642, 'min_samples_split': 7, 'min_samples_leaf': 

1, 'max_depth': 14, 'learning_rate': 0.2, 'alpha':0.5} 

XGBossting 
{'subsample': 0.8, 'seed': 578, 'n_estimators': 4183, 'min_child_weight': 7, 

'max_depth': 119, 'colsample_bytree': 0.5} 

 

Table 3 shows the three metrics assessed for each algorithm. The models show medium high R2 scores. 

The fact that some outliers were removed might have contributed to a low variance also visible in the 

mean absolute error (MAE). However when the model fails, it fails by a lot, which can be seen in the 

mean squared error (MSE). 

 

Table 3. Model Performance comparison between methods 

Methods 
R2 

Mean absolute 

error (£) 

Mean squared 

error (£) 

RandomForrest 80.4% 6.97 105.38 

GradientBoosting 78.3% 7.49 116.30 

XGBossting 76.8% 7.89 124.74 

 

It should be mentioned that the accuracies reported in Table 3, consider the ability to predict the test part 

of the dataset, having learnt from the training part of the dataset. To have the same accuracy with real 

time data would mean that the model could have access to all variables, which is not true because of the 

NetImbVol value being based on an estimation and quantile decomposition for regression. The feature 

importance reveals the variables contribution to the target variable estimation. Figure 11 shows all 

predictors. 
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Figure 11. Feature importance of each predictor for all three algorithms XGBoost, GB and RF 

 

It can easily be seen that the impact of the NetImbVol is the greatest. However, the direction in which 

it contributes to the model cannot be understood. Whether the price is positively or negatively impacted 

with the increase of the NetImbVol and at what values such change occurs, is not observable. For this 

reason, the partial dependences can be calculated, where one variable is observed, while maintaining the 

others at a constant mean value showing a sum of contributions. The SHAP library is used for this, 

which was built to model interpretability and used in XGBoost since it does not have by default a feature 

importance included. This can be seen in Figure 12, for three predictors.  
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Figure 12. Cumulative Partial dependency from the NetImbVol (upper), Production (center) 

and LOLP_12h predictors (bottom)  

 

The library also allows the representation of a dependence plot to show the effect of a single feature 

across the whole dataset as shown in Figure 13. 
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Figure 13. Partial dependences from the NetImbVol (upper), Production (center) and DRM_12h 

predictors (bottom) 

The partial dependencies show non-linear behavior. Both NetImbVol and Production predictors show 

increasing steps in price in precise values. Such values should be monitored carefully as they tend to 

prompt sudden shifts in prices. Analysing the feature importance, given the high dependence on one 

variable (NetmbVol), which is the variable that cannot be predicted, the RF and GB algorithms were 

discarded. The XGBoost appears to be the most appropriate to continue the implementation and hence 

the real time forecast was performed using this algorithm. 

 

Figure 14 presents the imbalance energy price trends for each of the 48 SP for the 23rd of June 2020. 

The forecast takes into account real data extracted from the ELEXON website. The only variable, which 

cannot be forecasted, is the Net Imbalance Volume (NetImbVol). To incorporate this uncertainty, the 
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95%, 90%, 80% and 5% quantiles of the query performed on the historical dataset, were subject to 

regressions and also shown in the Figure 14. The result is a variation of the mean prediction, which takes 

into account a possible fluctuation of the NetImbVol in case its value should be within the quantile range 

defined. 

 

 

Figure 14. Model price prediction with mean 5%, 80%, 90%, 95%, NetImbVol quantile 

regression 

 

All quantiles were compared with the real observation and checked for correlation. The highest 

correlation is with the 95% quantile, shown with the mean curve and real observation in Figure 15.  

 

 

Figure 15. Model price prediction mean and NetImbVol 95% quantile vs real data for 48 SP 

(test on the 23rd June 2020) 

Comparing the forecast and the real market price in both plots, one can observe two peaks of the real 

price, one in the morning period (SP 7 to 18) and one later in the evening (SP 36 to 46), and then a 

sudden drop at the end of the day also captured by the model. There is a lower high in the middle of the 

day from SP 23 to SP 30 and a small spike at SP 34, just before the last evening high. In terms of time 

span and precision of events, the dynamics of the prediction are acceptable in predicting the peaks. 

Regarding the amplitude, both peaks (morning and evening) are around 50 £/MWh with the second peak 

being slightly higher than the first, also predicted by the model. The middle peak is not predicted with 
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a value of 23 £/MWh compared to 40.3 £/MWh in the real observation. The evening spike at SP 34, is 

predicts at SP35 with a 30.5 £/MWh value instead of 35 £/MWh in the real observation.  

 

Regarding the bottom price instances throughout the day, minimum price forecasts predicted the market 

to clear at 12 £/MWh, while real price observations turned out to be just above 0 £/MWh. Such sudden 

drops while predicted in some cases, were unable to be followed by the model in terms of amplitude. 

However, since the interest is to have a fair sensitivity of the trend, the absolute values are less important, 

hence, this behaviour is acceptable. The ultimate goal is to know when to allocate the flexibility of the 

available assets. In this regard, the model can be used as a bidding strategy support tool. In the prediction 

shown in Figure 14, an aggregator should aim at allocating its DR flexible assets either from SP9 to 

SP15 or from SP 37 to 45. Moreover from the statistical analysis on Figure 9 (center), which refers to 

the month of June and the test day being a Tuesday (Figure 14), one can confirm that the evening period 

from 18h to 21h (SP 36 to SP 45) would be the most advantageous period to participate in the market. 

The accuracy of the model is sufficient for this exercise as well as the MAE. The statistical analysis 

approach is a useful one, especially when it comes to analysing seasonal patterns. The LOLP variable 

provided a useful contribution to the model accuracy, while the uncertainty generated by the NetImbVol 

variable, was well mitigated by the quantile approach and regression. The model will hence be provided 

to T4.4 in order to be integrated in the decision support tool. 
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6. Conclusion 
 
It is very unlikely that a model can predict a market price with very high precision. Its likelihood and 

adoption would influence the very outcome of the market, which would make the same model useless. 

Instead, what can be done is an attempt to identify deterministic or quasi-deterministic variables, which 

may have an impact on the market. In this article, a forecasting model was developed to capture those 

dynamics and understand what influences the energy imbalance market price may endure. A total of 19 

predictors were considered to develop a regression model using a machine learning algorithm, XGBoost. 

In terms of feature importance, the Net Imbalance Volume, the LOLP (aggregated), the De-rated 

margins (aggregated) and the month variables scored the highest, with 28.6% with 27.5%, 14.0%, and 

8.9% of weight on feature importance respectively. The model has a MAE of 7.89 £/MWh, a R2 score 

76.8% and a MSE of 124.74, which is acceptable for the problem being addressed. The study shows that 

the LOLPs are important predictors to be considered, while the uncertainty related to the NetImbVol 

variable can be mitigated with a quantile regression. A regression was also applied for the estimation of 

the NIV value, but it returned low R2 scores, hence the quantile approach was followed. Nevertheless, 

the NIV it remains a predictor which deserves further investigation. In the real example provided, the 

peaks of the daily price fluctuation were well predicted by the model and corroborated by the statistical 

analysis and hence one can assume that the correct SP could be potentially well identified in order to 

allocate the available DR flexibility. Furthermore, the amplitude of the price was predicted with an 

acceptable mean absolute error. However, the bottoms of the price fluctuation were far from the correct 

amplitude. Together with the statistical analysis, this approach could be indeed used as a support tool 

for market participants. 

 

The outcome of the developed service is expected to aid the decision making process of the Aggregator, 

through its DSS, while trying to identify the optimal time slots for participating within the imbalance 

market with flexibility acquired through Demand Response schemes. As will be highlighted in D4.4 

which is due M30, the DELTA Aggregator will explore potential participation in DR-markets during 

day-ahead and intra-day operation. Within that report, further details will be elaborated on the use of the 

developed service.  
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ANNEX A: Python Code for the Price Imbalance Forecast 
 
#Import the following libraries: 

import pandas as pd 

import numpy as np 

import matplotlib 

import matplotlib.pyplot as plt 

%matplotlib inline 

import numpy as np 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import r2_score 

from sklearn.metrics import adjusted_rand_score 

from sklearn.metrics import explained_variance_score 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import precision_score 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

from sklearn import ensemble 

import xgboost as xgb 

from xgboost import XGBRegressor 

from sklearn.model_selection import RandomizedSearchCV 

import timeit 

import seaborn as sns 

from pandas_profiling import ProfileReport 

 

df=pd.read_csv("C:\BalanceUKPrice2019.csv", infer_datetime_format=True, decimal='.', 

index_col=0, parse_dates=True) 

df.info() 

 

#Output 

"" 

DatetimeIndex: 17520 entries, 2019-01-01 to 2019-12-31 

Data columns (total 34 columns): 

 #   Column                Non-Null Count  Dtype   

---  ------                --------------  -----   

 0   Set Period            17520 non-null  int64   

 1   Price BM (Pound/MWh)  17520 non-null  float64 

 2   SBP                   17520 non-null  float64 

 3   BD                    17520 non-null  object  
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 4   PDC                   17520 non-null  object  

 5   RSP                   6913 non-null   float64 

 6   NetImbVol (MWh)       17520 non-null  float64 

 7   SPA                   17520 non-null  int64   

 8   BPA                   17520 non-null  float64 

 9   RP                    1867 non-null   float64 

 10  RPRV                  1867 non-null   float64 

 11  OV                    17520 non-null  float64 

 12  BV                    17520 non-null  float64 

 13  TotOfferVol           17520 non-null  float64 

 14  TotBidVol             17520 non-null  float64 

 15  ASV                   17520 non-null  float64 

 16  ABV                   17520 non-null  float64 

 17  TotAccSellVol         17520 non-null  float64 

 18  TotAccBidVol          17520 non-null  float64 

 19  itsd (MW)             17520 non-null  int64   

 20  Production (MW)       17520 non-null  int64   

 21  Solar (MW)            17520 non-null  int64   

 22  Wind (MW)             17520 non-null  float64 

 23  LOLP_12h              17520 non-null  float64 

 24  DRM_12h               17520 non-null  int64   

 25  LOLP_8h               17520 non-null  float64 

 26  DRM_8h                17520 non-null  int64   

 27  LOLP_4h               17520 non-null  float64 

 28  DRM_4h                17520 non-null  int64   

 29  LOLP_2h               17520 non-null  float64 

 30  DRM_2h                17520 non-null  int64   

 31  LOLP_1h               17520 non-null  float64 

 32  DRM_1h                17520 non-null  int64   

 33  Price DA (Pound/MWh)  17520 non-null  float64 

"" 

df.drop(df.columns[[2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18]], axis=1, inplace=True) 

df["Date"] = pd.to_datetime(df.index,infer_datetime_format=True, dayfirst=True) 

df.fillna((0), inplace=True) 

df["Price BM (Pound/MWh)"]=df["Price BM (Pound/MWh)"].astype('int32') 

df["NetImbVol (MWh)"]=df["NetImbVol (MWh)"].astype('int32') 

df["Production (MW)"]=df["Production (MW)"].astype('int32') 

df["Solar (MW)"]=df["Solar (MW)"].astype('int32') 

df["Wind (MW)"]=df["Wind (MW)"].astype('int32') 

df["LOLP_12h"]=df["LOLP_12h"].astype('int32') 

df["DRM_12h"]=df["DRM_12h"].astype('int32') 

df["LOLP_8h"]=df["LOLP_8h"].astype('int32') 

df["DRM_8h"]=df["DRM_8h"].astype('int32') 

df["LOLP_4h"]=df["LOLP_4h"].astype('int32') 

df["DRM_4h"]=df["DRM_4h"].astype('int32') 

df["LOLP_2h"]=df["LOLP_2h"].astype('int32') 

df["DRM_2h"]=df["DRM_2h"].astype('int32') 

df["LOLP_1h"]=df["LOLP_1h"].astype('int32') 
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df["DRM_1h"]=df["DRM_1h"].astype('int32') 

df["Price DA (Pound/MWh)"]=df["Price DA (Pound/MWh)"].astype('int32') 

 

df['Year'] = df.index.year 

df['Month'] = df.index.month 

df['Weekday Name'] = df.index.day_name() 

df.replace({'Weekday Name': {'Monday': 1, 'Tuesday': 2, 'Wednesday': 3, 'Thursday': 4,'Friday': 5, 

'Saturday': 6, 'Sunday': 7}}, inplace=True) 

df.drop("Date", axis=1, inplace=True) 

 

q_low = df["Price BM (Pound/MWh)"].quantile(0.0025) 

q_hi  = df["Price BM (Pound/MWh)"].quantile(0.9975) 

 

df= df[(df["Price BM (Pound/MWh)"] < q_hi) & (df["Price BM (Pound/MWh)"] > q_low)] 

df.drop("Year", axis=1, inplace=True) 

 

y=df.pop("Price BM (Pound/MWh)") 

y=pd.DataFrame(y) 

y=y.values.reshape(-1,1) 

y.shape 

 

X=df 

X=pd.DataFrame(X) 

 

train_X, test_X= np.split(X, [int(.90 *len(X))]) 

train_y, test_y= np.split(y, [int(.90 *len(y))]) 

 

 

%%time 

parameters = {'subsample': 0.8, 

 'seed': 578, 

 'n_estimators': 4183, 

 'min_child_weight': 7, 

 'max_depth': 11, 

 'colsample_bytree': 0.5} 

clf=XGBRegressor(**parameters) 

clf.fit(train_X, train_y) 

 

%%time 

test_data=(test_X) 

prediction=clf.predict(test_data) 

print("The expected balancing energy price is:", prediction, "£/MWh") 

 

prediction=prediction.astype(int) 

prediction=pd.DataFrame(prediction) 

test_y=pd.DataFrame(test_y) 

 

prediction.astype(int) 
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clf.feature_importances_ 

 

import matplotlib 

 

sns.set(font_scale=1.5, style='white') 

feature_importances = pd.Series(clf.feature_importances_, index=X.columns) 

feature_importances.sort_index 

feature_importances.plot(kind="barh", figsize=(7,6)) 

 

import shap 

 

# load JS visualization code to notebook 

shap.initjs() 

 

# train XGBoost model 

#X,y = shap.datasets.boston() 

#model = clf.train({"learning_rate": 0.01}, clf.DMatrix(X, label=y), 100) 

 

# explain the model's predictions using SHAP 

# (same syntax works for LightGBM, CatBoost, scikit-learn and spark models) 

explainer = shap.TreeExplainer(clf) 

shap_values = explainer.shap_values(test_X) 

 

# visualize the first prediction's explanation (use matplotlib=True to avoid Javascript) 

shap.force_plot(explainer.expected_value, shap_values[0,:], test_X.iloc[0,:]) 

shap.force_plot(explainer.expected_value, shap_values, test_X) 

shap.dependence_plot("NetImbVol (MWh)", shap_values, test_X) 

shap.dependence_plot("Production (MW)", shap_values, test_X) 

shap.dependence_plot("DRM_12h", shap_values, test_X) 

shap.summary_plot(shap_values, test_X) 

shap.summary_plot(shap_values, test_X, plot_type="bar") 

 

#Metrics Output 

r2_score(test_y, prediction, multioutput='variance_weighted') 

clf.score(test_X, test_y) 

print(explained_variance_score(test_y, prediction)) 

print(mean_absolute_error(test_y, prediction)) 

mse = mean_squared_error(test_y, prediction) 

print("MSE: %.4f" % mse) 

 

#Hyper Parameter Calculation 

# Number of trees in random forest 

n_estimators = [int(x) for x in np.linspace(start = 500, stop = 10000, num = 50)] 

# Maximum number of levels in tree 

max_depth = [3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33] 

# Minimum number of samples required  

subsample = [0.5, 0.6, 0.7, 0.8, 0.9] 

colsample_bytree = [0.5, 0.6, 0.7, 0.8, 0.9] 
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min_child_weight= [1,3,4,5,7] 

seed=[int(i) for i in np.linspace(start = 0, stop = 1000, num = 20)] 

# Create the random grid 

random_grid = {'n_estimators': n_estimators, 

               'max_depth': max_depth, 

               "subsample":subsample, 

               'colsample_bytree': colsample_bytree, 

               'min_child_weight': min_child_weight, "seed":seed} 

 

#Include the output parameters in the model parameters 

clf_random.best_params_  

 

#Use the API or Scrapping tools to retrieve the data from the Elexon Website 

from LoLP_Elexon_Scrapping1 import df3_result 

from SystemDemandandProductionElexonScrapping import df5_result, df4_result 

from WindSolarForecast_ElexonScrapping2 import df6_solar, df6_wind 

from DA_Price_Scrapping2 import df7 

 

df3_result["Settlement Period"]=pd.to_numeric(df3_result["Settlement Period"]) 

df5_result.dtypes 

df6_solar["Settlement Period"]=pd.to_numeric(df6_solar["Settlement Period"]) 

df6_wind.dtypes 

real_test3 = pd.merge(df3_result, df5_result, on='Settlement Period') 

real_test2=pd.merge(real_test3, df6_solar,on='Settlement Period') 

real_test1=pd.merge(real_test2, df6_wind, on='Settlement Period') 

 

real_test00=pd.merge(real_test1, df4_result, on='Settlement Period') 

real_test0=pd.merge(real_test00, df7, on='Settlement Period') 

real_test0["Date"] = pd.to_datetime(real_test0["Date"],infer_datetime_format=True)  

 

real_test0["Date"].dtype 

real_test0.set_index("Date", inplace=True) 

 

real_test0['Month'] = real_test0.index.month 

real_test0['Weekday Name'] = real_test0.index.day_name() 

real_test0.replace({'Weekday Name': {'Monday': 1, 'Tuesday': 2, 'Wednesday': 3, 'Thursday': 4,'Friday': 

5, 'Saturday': 6, 'Sunday': 7}}, inplace=True) 

real_test0.drop(real_test0.columns[[11,13,16,17]], axis=1, inplace=True) 

real_test0.head(3) 

 

real_test0.rename(columns={"Settlement Period":"Set Period","12h LoLP":"LOLP_12h","12h 

DRM":"DRM_12h","8h LoLP":"LOLP_8h", 

                        "8h DRM":"DRM_8h","4h LoLP":"LOLP_4h","4h DRM":"DRM_4h","2h 

LoLP":"LOLP_2h", 

                          "2h DRM":"DRM_2h","1h LoLP":"LOLP_1h","1h DRM":"DRM_1h","Quantity 

(MW)":"Production (MW)", 

                         "Day Ahead (MW)_x":"Solar (MW)","Day Ahead (MW)_y":"Wind (MW)","TSDF 

(MW)":"itsd (MW)", "Price DA (Pound/MWh)":"Price DA (Pound/MWh)"}, inplace=True) 



 

H2020 Grant Agreement Number: 773960 
Document ID: WP4 / D4.3   

 

  Page 36 

 

real_test0["Solar (MW)"]=real_test0["Solar (MW)"].astype('int32') 

 

real_test0=pd.DataFrame(real_test0) 

 

#NET Imb Vol Estimation based on quantiles 

 

import numpy as np 

import scipy.stats 

from scipy import stats 

 

 

def mean_confidence_interval(data, confidence): 

    a = 1.0 * np.array(data) 

    n = len(a) 

    m, se = np.mean(a), scipy.stats.sem(a) 

    h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1) 

    return (m, m-h, m+h) 

 

searchMin = 0.3 

searchMax = 1.7 

windMin = 0.3 

windMax = 1.5 

 

a=pd.DataFrame() 

              

real_test0['NIVmean']=0.0 

real_test0['NIV95max']=0.0 

real_test0['NIV95min']=0.0 

real_test0['NIV90max']=0.0 

real_test0['NIV90min']=0.0 

real_test0['NIV80max']=0.0 

real_test0['NIV80min']=0.0 

real_test0['NIV5max']=0.0 

real_test0['NIV5min']=0.0 

 

for i in range(0, 48):                           

        sample = df['NetImbVol (MWh)'].loc[(df['itsd (MW)'].between(real_test0['itsd (MW)'] 

                        [i]*searchMin,real_test0['itsd (MW)'][i]*searchMax))& 

                       (df['Production (MW)'].between(real_test0['Production (MW)'] 

                        [i]*searchMin,real_test0['Production (MW)'][i]*searchMax))& 

                       (df['Wind (MW)'].between(real_test0['Wind (MW)'][i] 

                        *windMin,real_test0['Wind (MW)'][i]*windMax))& 

                       (df['Solar (MW)'].between(real_test0['Solar (MW)'] 

                        [i]*searchMin,real_test0['Solar (MW)'][i]*searchMax))].tolist()              

         

        m95, m95min, m95max = mean_confidence_interval(sample, 0.95) 

        m90, m90min, m90max = mean_confidence_interval(sample, 0.9) 
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        m80, m80min, m80max = mean_confidence_interval(sample, 0.8) 

        m5, m5min, m5max = mean_confidence_interval(sample, 0.05) 

         

        real_test0['NIVmean'][i] = m95 

        real_test0['NIV95max'][i] = m95max   

        real_test0['NIV95min'][i] = m95min 

        real_test0['NIV90max'][i] = m90max  

        real_test0['NIV90min'][i] = m90min 

        real_test0['NIV80max'][i] = m80max 

        real_test0['NIV80min'][i] = m80min 

        real_test0['NIV5max'][i] = m5max 

        real_test0['NIV5min'][i] = m5min 

     

        p5 = np.percentile(sorted(sample), 5) 

        p25 = np.percentile(sorted(sample), 25) 

        p50 = np.percentile(sorted(sample), 50) 

        p75 = np.percentile(sorted(sample), 75) 

        p95 = np.percentile(sorted(sample), 95) 

        meann = np.mean(sorted(sample)) 

 

real_test_mean=real_test0.drop(real_test0.columns[[19,20,21,22,23,24,25,26]], axis=1) 

real_test_mean.rename(columns={"NIVmean":"NetImbVol (MWh)"},inplace=True) 

real_test_mean = real_test_mean[['Set Period', 'NetImbVol (MWh)', 'itsd (MW)', 'Production (MW)', 

'Solar (MW)', 'Wind (MW)', 'LOLP_12h', 'DRM_12h', 'LOLP_8h', 'DRM_8h', 'LOLP_4h', 'DRM_4h', 

'LOLP_2h', 'DRM_2h', 'LOLP_1h', 'DRM_1h','Price DA (Pound/MWh)', 'Month', 'Weekday Name']] 

 

real_test_NIV95max=real_test0.drop(real_test0.columns[[20,21,22,23,24,25,26]], axis=1) 

real_test_NIV95max.rename(columns={"NIV95max":"NetImbVol (MWh)"},inplace=True) 

real_test_NIV95max = real_test_NIV95max[['Set Period', 'NetImbVol (MWh)', 'itsd (MW)', 

'Production (MW)', 'Solar (MW)', 'Wind (MW)', 'LOLP_12h', 'DRM_12h', 'LOLP_8h', 'DRM_8h', 

'LOLP_4h', 'DRM_4h', 'LOLP_2h', 'DRM_2h', 'LOLP_1h', 'DRM_1h','Price DA (Pound/MWh)', 

'Month', 'Weekday Name']] 

 

real_test_NIV95min=real_test0.drop(real_test0.columns[[19,21,22,23,24,25,26]], axis=1) 

real_test_NIV95min.rename(columns={"NIV95min":"NetImbVol (MWh)"},inplace=True) 

real_test_NIV95min = real_test_NIV95min[['Set Period', 'NetImbVol (MWh)', 'itsd (MW)', 'Production 

(MW)', 'Solar (MW)', 'Wind (MW)', 'LOLP_12h', 'DRM_12h', 'LOLP_8h', 'DRM_8h', 'LOLP_4h', 

'DRM_4h', 'LOLP_2h', 'DRM_2h', 'LOLP_1h', 'DRM_1h','Price DA (Pound/MWh)', 'Month', 'Weekday 

Name']] 

 

real_test_NIV90max=real_test0.drop(real_test0.columns[[19,20,22,23,24,25,26]], axis=1) 

real_test_NIV90max.rename(columns={"NIV90max":"NetImbVol (MWh)"},inplace=True) 

real_test_NIV90max = real_test_NIV90max[['Set Period', 'NetImbVol (MWh)', 'itsd (MW)', 

'Production (MW)', 'Solar (MW)', 'Wind (MW)', 'LOLP_12h', 'DRM_12h', 'LOLP_8h', 'DRM_8h', 

'LOLP_4h', 'DRM_4h', 'LOLP_2h', 'DRM_2h', 'LOLP_1h', 'DRM_1h','Price DA (Pound/MWh)', 

'Month', 'Weekday Name']] 

 

real_test_NIV90min=real_test0.drop(real_test0.columns[[19,20,21,23,24,25,26]], axis=1) 
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real_test_NIV90min.rename(columns={"NIV90min":"NetImbVol (MWh)"},inplace=True) 

real_test_NIV90min = real_test_NIV90min[['Set Period', 'NetImbVol (MWh)', 'itsd (MW)', 'Production 

(MW)', 'Solar (MW)', 'Wind (MW)', 'LOLP_12h', 'DRM_12h', 'LOLP_8h', 'DRM_8h', 'LOLP_4h', 

'DRM_4h', 'LOLP_2h', 'DRM_2h', 'LOLP_1h', 'DRM_1h','Price DA (Pound/MWh)', 'Month', 'Weekday 

Name']] 

 

real_test_NIV80max=real_test0.drop(real_test0.columns[[19,20,21,22,24,25,26]], axis=1) 

real_test_NIV80max.rename(columns={"NIV80max":"NetImbVol (MWh)"},inplace=True) 

real_test_NIV80max = real_test_NIV80max[['Set Period', 'NetImbVol (MWh)', 'itsd (MW)', 

'Production (MW)', 'Solar (MW)', 'Wind (MW)', 'LOLP_12h', 'DRM_12h', 'LOLP_8h', 'DRM_8h', 

'LOLP_4h', 'DRM_4h', 'LOLP_2h', 'DRM_2h', 'LOLP_1h', 'DRM_1h','Price DA (Pound/MWh)', 

'Month', 'Weekday Name']] 

 

real_test_NIV80min=real_test0.drop(real_test0.columns[[19,20,21,22,23,25,26]], axis=1) 

real_test_NIV80min.rename(columns={"NIV80min":"NetImbVol (MWh)"},inplace=True) 

real_test_NIV80min = real_test_NIV80min[['Set Period', 'NetImbVol (MWh)', 'itsd (MW)', 'Production 

(MW)', 'Solar (MW)', 'Wind (MW)', 'LOLP_12h', 'DRM_12h', 'LOLP_8h', 'DRM_8h', 'LOLP_4h', 

'DRM_4h', 'LOLP_2h', 'DRM_2h', 'LOLP_1h', 'DRM_1h','Price DA (Pound/MWh)', 'Month', 'Weekday 

Name']] 

 

real_test_NIV5max=real_test0.drop(real_test0.columns[[19,20,21,22,23,24,26]], axis=1) 

real_test_NIV5max.rename(columns={"NIV5max":"NetImbVol (MWh)"},inplace=True) 

real_test_NIV5max = real_test_NIV5max[['Set Period', 'NetImbVol (MWh)', 'itsd (MW)', 'Production 

(MW)', 'Solar (MW)', 'Wind (MW)', 'LOLP_12h', 'DRM_12h', 'LOLP_8h', 'DRM_8h', 'LOLP_4h', 

'DRM_4h', 'LOLP_2h', 'DRM_2h', 'LOLP_1h', 'DRM_1h','Price DA (Pound/MWh)', 'Month', 'Weekday 

Name']] 

 

real_test_NIV5min=real_test0.drop(real_test0.columns[[19,20,21,22,23,24,25]], axis=1) 

real_test_NIV5min.rename(columns={"NIV5min":"NetImbVol (MWh)"},inplace=True) 

real_test_NIV5min = real_test_NIV5min[['Set Period', 'NetImbVol (MWh)', 'itsd (MW)', 'Production 

(MW)', 'Solar (MW)', 'Wind (MW)', 'LOLP_12h', 'DRM_12h', 'LOLP_8h', 'DRM_8h', 'LOLP_4h', 

'DRM_4h', 'LOLP_2h', 'DRM_2h', 'LOLP_1h', 'DRM_1h','Price DA (Pound/MWh)', 'Month', 'Weekday 

Name']] 

 

#Predicting mean and quantiles 

predict_mean=clf.predict(real_test_mean) 

print("The expected mean balancing energy price for the Day", real_test3.Date[0], "per SP is:\n\n", 

predict_mean, "£/MWh \n") 

predict_mean=pd.DataFrame(predict_mean) 

predict_mean.to_csv("predict_mean.csv") 

 

predict_NIV95max=clf.predict(real_test_NIV95max) 

print("The expected NIV95max balancing energy price for the Day", real_test3.Date[0], "per SP is:\n\n", 

predict_NIV95max, "£/MWh \n") 

predict_NIV95max=pd.DataFrame(predict_NIV95max) 

predict_NIV95max.to_csv("predict_NIV95max.csv") 

 

predict_NIV95min=clf.predict(real_test_NIV95min) 
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print("The expected NIV95min balancing energy price for the Day", real_test3.Date[0], "per SP is:\n\n", 

predict_NIV95min, "£/MWh \n") 

predict_NIV95min=pd.DataFrame(predict_NIV95min) 

predict_NIV95min.to_csv("predict_NIV95min.csv") 

 

predict_NIV90max=clf.predict(real_test_NIV90max) 

print("The expected NIV90max balancing energy price for the Day", real_test3.Date[0], "per SP is:\n\n", 

predict_NIV90max, "£/MWh \n") 

predict_NIV90max=pd.DataFrame(predict_NIV90max) 

predict_NIV90max.to_csv("predict_NIV90max.csv") 

 

predict_NIV90min=clf.predict(real_test_NIV90min) 

print("The expected NIV90min balancing energy price for the Day", real_test3.Date[0], "per SP is:\n\n", 

predict_NIV90min, "£/MWh \n") 

predict_NIV90min=pd.DataFrame(predict_NIV90min) 

predict_NIV90min.to_csv("predict_NIV90min.csv") 

 

predict_NIV80max=clf.predict(real_test_NIV80max) 

print("The expected NIV80max balancing energy price for the Day", real_test3.Date[0], "per SP is:\n\n", 

predict_NIV80max, "£/MWh \n") 

predict_NIV80max=pd.DataFrame(predict_NIV80max) 

predict_NIV80max.to_csv("predict_NIV80max.csv") 

 

predict_NIV80min=clf.predict(real_test_NIV80min) 

print("The expected NIV80min balancing energy price for the Day", real_test3.Date[0], "per SP is:\n\n", 

predict_NIV80min, "£/MWh \n") 

predict_NIV80min=pd.DataFrame(predict_NIV80min) 

predict_NIV80min.to_csv("predict_NIV80min.csv") 

 

predict_NIV5max=clf.predict(real_test_NIV5max) 

print("The expected NIV5max balancing energy price for the Day", real_test3.Date[0], "per SP is:\n\n", 

predict_NIV5max, "£/MWh \n") 

predict_NIV5max=pd.DataFrame(predict_NIV5max) 

predict_NIV5max.to_csv("predict_NIV5max.csv") 

 

predict_NIV5min=clf.predict(real_test_NIV5min) 

print("The expected NIV5min balancing energy price for the Day", real_test3.Date[0], "per SP is:\n\n", 

predict_NIV5min, "£/MWh \n") 

predict_NIV5min=pd.DataFrame(predict_NIV5min) 

predict_NIV5min.to_csv("predict_NIV5min.csv") 

 

predict_mean=pd.DataFrame(predict_mean) 

real_test_mean.rename(columns={0:'Predicted Price for Today'},inplace=True) 

 

plt.figure(figsize=(15, 7)) 

sns.lineplot(data=predict_mean) 

sns.lineplot(data=predict_NIV95max) 

sns.lineplot(data=predict_NIV95min) 
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sns.lineplot(data=predict_NIV90max) 

sns.lineplot(data=predict_NIV90min) 

sns.lineplot(data=predict_NIV80max) 

sns.lineplot(data=predict_NIV80min) 

sns.lineplot(data=predict_NIV5max) 

sns.lineplot(data=predict_NIV5min) 


