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Executive Summary 

During the last years there is a growing body of research over smart grids’ technology which aims to 

make electricity generation greener and more efficient. Demand-side management is a key part of this 

body, since it focuses on alternating the demand behaviour. Among other goals, efficient demand-side 

management facilitates a higher integration of renewable energy sources into the grid.  
 
The DELTA project addresses the problem of designing a novel architecture in order to handle a large 

number of low and medium scale prosumers and ultimately flatten the demand curve. This is done by 

optimally participating in the electricity markets and by serving demand response requests that are made 

by the electric grid operator. 

 
The document at hand provides detailed information about how electricity markets work and what the 

main characteristics of demand response strategies are. However, the main objective of this work is to 

document the architecture behind the Decision Support System of the DELTA aggregator which 

functions as the supervisory intelligence of the DELTA infrastructure.  

 

To further expand the potential of the DELTA framework, some improvements are also presented in 

terms of forecasting services for the Net Imbalance Volume and the Day-ahead and Intra-day market 

prices.  

 

The system proposed, can handle both incoming Demand Response (DR) requests from higher level 

stakeholders (e.g. DSO, TSO, etc.) at any given time, while also self-optimizing the Aggregator’s 

participation to dynamic DR markets. As the markets, systems, and technologies related to DR are 

getting closer and closer to real-time operation, the DELTA DSS mainly focused in Day-ahead 

scenarios.   
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  Introduction 

 Scope and objectives of the deliverable 

This deliverable is associated with Task 4.4 of the DELTA project and provides information about the 

architecture of the DELTA Decision Support System. In addition, related work and methods are 

presented throughout the document as part of a literature review for the topic. 

 Structure of the deliverable 

The work presented in this deliverable is structured as follows.  

 

 Chapter 2 introduces once more the rules and methods in EU electricity markets. 

 

 Chapter 3 consists of a brief literature review on the topic of Demand - Response strategies. 

The main techniques are described together with useful material about available control policies 

for demand-side management.   

 

 Chapter 4 introduces some improvements and additions following T4.3 and D4.3 in terms of 

forecasting services required for the DELTA DSS.  

 

 Chapter 5 addresses the problem and the challenge of the DELTA aggregator. The nature of 

instant DR requests is described and the optimal participation in electricity markets is broken 

down to a two-stage stochastic programming problem.  

 

 Chapter 6 introduces some simulated results of optimal participation in the market using 

artificial data. 

 

 Chapter 7 concludes the report. 

      

 Relation to other tasks and deliverables 

The task of designing the Decision Support System (DSS) of the DELTA aggregator is related with 

many subcomponents of the DELTA architecture, as a supervisory engine. As it also deals with business 

aspects, this report is also related with WP2 results in terms of business models and outcomes. Hence, 

taking into account technical and business requirements from WP1 and WP2, respectively, as well as 

technical results from WP3, WP4, and WP5, the DELTA Aggregator’s DSS provides the supervisory 

engine the aims to increase the reliability and the revenues of the Aggregator’s role.  
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 Energy Markets in Europe 

The electricity system in Europe is going under remarkable changes during the last years. The growing 

role of renewable energy sources together with the fact that electric vehicles and smart energy storage 

systems are becoming more popular, are factors that urge the transition towards a lower-carbon and 

more efficient system. The energy markets play a significant role in this transition by facilitating not 

only more efficient generation but also more active demand-side management. Specifically, one of the 

core tasks of the DELTA Aggregator is to participate in the energy markets by optimally performing 

demand-side management. The main function of retail and wholesale markets has been previously 

discussed in the context of the D2.3 “DELTA Business Models v1”. Specifically, the potential of trading 

flexibility in the markets was under consideration. In this chapter, the function and structure of the main 

electricity markets in Europe are discussed making sure that necessary theoretical background for 

optimal participation is provided. 

 Day ahead Market  

As described in [1], the day ahead market takes place on day D-1 and it concerns the bidding process 

through which the power agents commit to sell or buy a certain amount of energy at every hour in the 

day D. The energy price at each hour is not known at the time of bidding and it is only known after the 

market clearing process is over around noon of day D-1, when all the bids from all the generators are 

revealed. The output of the clearing process of the day ahead market is how much energy is to be bought 

or sold by each participant in every hour of day D and the corresponding price. Participation in this 

market is cumbersome because each participant must submit its bids one day in advance with a high 

degree of uncertainty, associated with important parameters such as renewable energy and market prices 

for day D, as described in [2]. 
 

 Intra-day Market 

To better handle the challenge of high degree of uncertainty, the market operator runs several sessions 

of the intra-day market [2]. In each session, the  agents  can  buy or sell  energy  in  order  to  adjust  

their  acquired  commitments  in the day ahead market  through  a  bidding process.  These  intra-day 

market  sessions  are  run  closer  to  the  time  of  actual  delivery  of  energy  by  the  agents  so  less 

uncertain information is supposed to be available for the agents.  The first session of the intra-day 

market for day D ends in the late evening of day D-1, with a time span including the entire day D. 

 

 Imbalance Market 

Lastly, in every hour or quarter of the day D, a real-time balancing market is run to handle the deviations 

between the commitments in day ahead market and intra-day market and the actual delivery of energy 

in real-time. The imbalance market, also called balancing market, will determine the price of the 

deviation of the power agent with respect to what it was committed in the day ahead and intra-day 

market. 
 

 Other markets 

Day ahead, intra-day and imbalance markets are of high interest for the DELTA aggregator to 

participate in. Yet, in Europe there are more mechanisms and corresponding markets that aim to 

robustify the electricity infrastructure. Such mechanisms and markets are discussed in the following 

paragraphs. 
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2.4.1 Capacity market and STOR 

 

Depending on the available assets, a generator or generally a virtual power plant that participates in the 

electricity markets is able to sign contracts with the grid operator in order to provide it with the ability 

to request a certain amount of either increase of generation or reduction of consumption. These contracts 

are usually made on an annual basis and they are part of the so-called capacity market [3]. In practice, 

the grid operator purchases the right to request for spare capacity in cases that the grid is under stress. 

Unless it is an extreme emergency, the requests are done with a four-hour notice, so as the virtual power 

plant or the generator has enough time to prepare. In the context of the DELTA project, serving similar 

external requests from the grid operator is of great interest and many details about how this is dealt with 

are described in chapter 5. 
 

An additional service that is provided in the UK electricity market is STOR, which stands for Short-

term Operating Reserve. Despite the provision for balancing supply and demand of electricity via the 

aforementioned markets, unforeseen generation unavailability or actual demand being greater than 

forecasted might cause problems for stability of the system. STOR serves as a balancing service, where 

an external provider delivers standby or emergency power when requested to do so. Unlike the four-

hour notice that holds in the Capacity market, STOR providers are required to generate power within a 

shorter period of time, depending on the contract with the national grid. 

 
2.4.2 Frequency response services market 

 

The grid operator in each country in Europe is obliged to control the system frequency at 50 Hz, plus 

or minus approximately 1%, depending on the grid regulations of each country. This is reassured by the 

operator by making contracts with providers who can meet some technical requirements. Such provision 

might come from generators connected to the transmission and distribution network, storage providers 

or aggregated demand side response [4]. In practice, there are several mechanisms under different labels 

that serve the same frequency control goal. Specifically, a frequency response service provided 

continuously is characterized as dynamic, whereas a service which is triggered only at a defined 

frequency deviation is called static. Moreover, time response is an additional factor that may 

characterize a label of a certain frequency response service.  
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 Demand Response Strategies  
 
Research and development over smart grids have attracted significant attention in the last few years. 

The growing participation of renewable energy sources, such as wind turbines and photovoltaic parks, 

was a key-element for reducing the dependency of the electricity grid on fossil fuels and nuclear power. 

However, due to the volatile nature of renewable energy sources, more and more attention is focused 

on how to efficiently manage the demand-side, so as to maximize the potential integration of 

renewables. As a matter of fact, demand response is one of the most cost-effective and reliable ways 

for smoothing the demand curve, in case that the system is under stress [5]. In the following paragraphs 

different schemes and approaches of demand response strategies are reviewed and discussed. 
 

 Classification of DR programs   

Demand-response (DR) is one of the main activities for demand-side management and it can be 

described as the set of approaches which seek to alternate the demand behaviour of the consumers, in 

time and volume, so as to maximize the incorporation of renewable energy sources (RES), as described 

in [5]. Generally, consumers can be large-scale, medium-scale and even low-scale prosumers. 

Naturally, large-scale consumers such as industrial clients are more easily integrated in demand-

response programs, given that few demanding loads are easier to be controlled than many of low 

consumption [8]. However, recently there is a growing body of research performed regarding the 

incorporation of residential consumers and buildings in demand-response programs [7]. 

 

 

3.1.1 Control Mechanism  

 

Demand-response schemes can be first classified with respect to the control mechanism that is 

considered, which can be either centralized or distributed. In the centralized mode final users 

communicate directly with the central intelligence unit, which seeks to optimally handle the available 

assets. On the other hand, in the distributed mode there is interaction between final users and related 

information is provided to the central agent [9].  
 
Generally, a central agent who aggregates prosumers and seeks to employ a DR strategy can be called 

a Virtual Power Plant (VPP) [6]. Apart from the flow of information, DR strategies can be classified 

with respect to the control policy that is used. Control policies are usually divided in direct and indirect, 

as deployed in [7]. Briefly, direct control policies refer to issuing specific commands to controllable 

loads, whereas indirect control policies refer to issuing signals to the final users which might or might 

not alternate their operation. This topic is of high importance for the DELTA aggregator, since serving 

internal DRs is one of its main tasks and for that we discuss it in more detail in the following subsections. 

 

3.1.2 Direct Control 

 

Decisions in direct control approaches are made by an external controller that serves as the intelligent 

agent and has access to the status of the load under control. In the DELTA approach the central 

intelligence agent, that is the aggregator, has access to information about aggregated consumption, 

however no access to information about the status of individual loads. Thus, specific decisions are taken 

in two steps, one for each layer of the aggregator and the DVNs. 
 
In the general case, direct control policies can be categorized with respect to the type of information 

that is exchanged between the final user’s interface and the central controller [9]. According to [12], 

these types are:  

 

A. Deferred operation: The consumption of production of a certain amount of energy is shifted 

in time, as presented in Figure 1.A. The amount of power consumed or produced remains the 
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same as well as the duration of the operation. The signal that is received by the final user’s 

interface is of type Δt, which represents the required delay of an operation. 

B. Delta operation: The amount of energy consumed or produced by the final user’s interface is 

decreased or increased by an offset ΔP, called power difference, see Figure 1.B. Decrease in 

consumption might result in increase in duration of the operation, for example in operation of 

thermal loads like a heat-pump. 

C. Scheduled operation: The central agent provides the final user with an operation schedule s , 

consisting of time series of power set points and time stamps, where s={(ti,Pi)}, i in N, as shown 

in Figure 1.C. 

D. Direct power control: In this case the central agent provides the final user with a power set 

point, P, as illustrated in Figure 1.D. 

 

 

 

Figure 1. Direct Control Policies. A: Deferred Operation, B: Delta Operation, C: Scheduled 

operation, and D: Direct Power Control.  

 

3.1.3 Indirect Control 

 

‘Indirectness of the relationship between control objective and actual outcome’ and ‘non-deterministic 

behaviour due to the fact that final decisions are taken locally and independently by final users’, are the 

two main characteristics of indirect control policies [7]. In the general case, the final user accepts some 

control signals from the central agent but it is not obliged to either react to the signal or send any 

feedback. 
 

Due to their nature, indirect control policies imply scalability for the system, which means that the 

system remains effective when there is a significant increase in number of resources or users [10]. In 

contrast to direct control policies where different and individual signals should be sent to each final 

user, in indirect control a single control signal can be received by any number of consumers. According 

to [11], such policies can be classified to control with indirect functional variables and indirect control 

via price signals.  

 
The most commonly found in the literature is indirect control via price signals. This approach is often 

met as incentive-based indirect control and in the case that incentives are financial, or they can be 

interpreted as such, the same approach is followed. In the general case, the central agent issues energy 
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prices or financial incentives to the final users in order to alternate their operation. Usually, the signal 

is a schedule s of future prices-incentives, consisting of time series of prices and time stamps, where:  

 

s = {(ti,pi)},i in N. 

 
In the context of the DELTA project, the control mechanism that is used is a combination of both 

centralized and distributed modes. Namely, the aggregator layer is responsible for high level tasks, such 

as participation in the markets and serving external DR requests, yet the DVNs layer is responsible for 

implementing the decisions made by the aggregator. Similarly, both direct and indirect control policies 

are necessary to be used depending on what kind of action is to be served and of course depending on 

the type of the final user. More details about the implementation of the Decision Support System of the 

DELTA aggregator are provided in chapter 5. 
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 Day-Ahead, Intra-day, and NIV Forecasting improvements 
 

Following the activities and results presented in D4.3, and given certain progress, improvements and 

new ideas explored through WP4 activities and close collaboration with various stakeholders, additional 

or improved forecasting engines have been introduced, and are documented in this chapter, 

complementary to D4.3. 

 

 Day Ahead - Intraday Price Forecasting 

4.1.1 State-of-the-Art  
 

Energy price forecasting plays an important role for the planning, the bidding strategies and 

consequently the risk management of market participants.  Thus, a huge effort is made to predict the 

price of energy more accurately, especially on the part of energy companies. However predicting the 

energy price is a challenging task, as the high volatility of the price results in inconstant mean, variance 

and significant outliers. The main reason that causes the price volatility is the uncertainty and the large 

deviations of the solar and wind forecasts. This volatility increases as the integration of intermittent 

sources of electric power generation continues to rise. Finally, another important factor that affects the 

price forecasting are the fuel prices such as oil and natural gas prices. Many attempts have been made 

in order to tackle these challenges. Generally, the main models that were utilized can be classified into 

two categories, namely time series models and machine learning models. The most commonly used 

time series model that is applied in electricity price forecasting is the autoregressive model and more 

specifically its variants, such as autoregressive integrated moving average (ARIMA), autoregressive 

and moving average (ARMA) and generalized autoregressive conditional heteroscedasticity (GARCH)2 

[16][17]. Besides, [18] propose a new time series model called autoregressive-GARCH. Last but not 

least, some time series models have been combined with other models [19][20]. Regarding the machine 

learning models artificial networks are widely used, due to their ability to learn and represent accurately 

complex and non-linear patterns. In [13] a day ahead price forecasting is conducted by utilizing neural 

networks. Additionally, there is an interesting comparison between many different models that are using 

different numbers and types of features input. More particular, the model with the best performance 

seems to be the one that is using historical data of natural gas and predicted RES values. Ensemble 

methods were also utilized by combining different machine learning models [21] and achieving a higher 

accuracy at the end. Finally in the recent years, there have been many efforts to integrate and utilize 

features extracted from the connected electricity markets [14][15], in order to improve the predictive 

performance of the day ahead price forecasting. 

 

As it was mentioned above due the uncertain nature of the renewable energy sources (RES) there is a 

high possibility for an inaccurate forecast resulting in high real time prices. In order to avoid the risk of 

inaccurate forecasts and to follow some possible updates in the available conventional power 

plants, day-ahead markets have been complemented by intraday markets. Though, variable generators 

and load serving entities prefer to participate in intraday markets and balance their positions by trading 

energy closer to the operating hour. As it becomes clear the only difference with day-ahead market lies 

in the fact of their closeness to the real delivery time. The intraday markets that are organized by power 

exchanges usually take the forms either of auctions or continuous trading. Purchasing and selling of 

electricity is allowed throughout the whole day, up to a few minutes before the physical delivery. The 

objective function of the intraday auctions is to minimize the total adjustment cost, with respect to the 

deviations from day-ahead market results. For all the aforementioned reasons above, intra-day 

electricity price forecasting research has received increasing attention. In [22] there is a proposed 

forecasting strategy in order to detect and capture the spikes in electricity price forecasting, which are 

unlikely to be found by the day electricity price forecast. Additionally, [23] reports about the economic 

benefits having precise intraday price forecasts. 

                                                      
2 https://www.sciencedirect.com/topics/engineering/heteroscedasticity  

https://www.sciencedirect.com/topics/engineering/heteroscedasticity
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The electricity price forecasting tool developed within the DELTA project, takes into consideration 

both day ahead and intraday markets and more specifically the energy market of the United Kingdom, 

but it can be applied to other energy markets as well. As a result, two forecasting tools were developed, 

namely a day-ahead price forecasting tool and a complementary tool corresponding to the intraday price 

forecasting. Day-ahead is executed every day and more particular every midnight, unlike the intraday 

tool that is executed in half-hour time intervals. As it was mentioned before, the only difference between 

the tools lies in the fact of their time execution. The goal of executing every half-hour the intraday 

forecasting tool is to detect and capture the spikes that often occur in the electricity prices. Below a flow 

diagram describing the methodology for the development of the electricity price forecasting tool is 

illustrated. 

 

4.1.2 Methodology 

 

 

Figure 2. Day-ahead and Intra-day forecasting methodology flow.  

 

4.1.2.1 Data Cleaning: 

 

Data cleaning is one of the most important and time consuming aspects during time series forecasting. 

In many cases during the data collection, data will be either not recorded or will be stored at the wrong 

value. The data cleaning module is responsible for detecting such values and managing them 

accordingly by replacing, modifying or dropping them. The main goal is to construct time series out of 

the data provided by the local database. Because the prediction models use records collected for a whole 

day, missing data is either omitted or supplemented in case the number of the missing values is lower 

than a certain percent for every day respectively. Finally, values that are considered outliers are removed 
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using the z-score method. Z-score describes the position of a record in terms of the distance from the 

mean, when measured in standard deviation units.  

 

4.1.2.2 Train/Test process: 

 

The feature engineering and development of the models is the next step after the data cleaning module. 

In general, predicting multi-step time series forecasting problems can be achieved in two ways, namely 

with direct or with recursive multi-step forecast strategy. The main difference of direct and recursive 

multi-step lies in the fact that the recursive is utilizing the forecast for one step ahead as a new input 

feature for the next forecast, unlike with the direct strategy where for each horizon step an independent 

model is trained respectively. Below there are the equations that represent both strategies: 

 

Recursive multi-step strategy: 
 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡 + 1) = 𝑚𝑜𝑑𝑒𝑙(𝑣𝑎𝑙𝑢𝑒(𝑡 − 1), 𝑣𝑎𝑙𝑢𝑒(𝑡 − 2), ⋯ , 𝑣𝑎𝑙𝑢𝑒(𝑡 − 𝑛)) 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡 + 2) = 𝑚𝑜𝑑𝑒𝑙(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑡 + 1), 𝑣𝑎𝑙𝑢𝑒(𝑡 − 1), ⋯ , 𝑣𝑎𝑙𝑢𝑒(𝑡 − 𝑛)) 

⋯ 

prediction(t + n)  =  model(prediction(t + n − 1), prediction(t + n − 2), . . . , value(t − 1)) 

 

 

Direct multi-step strategy:  
 

prediction(t + 1) =  model1(value(t − 1), value(t − 2), … , value(t − n)) 

prediction(t + 2)  =  model2(value(t − 1), value(t − 2), . . . , value(t − n)) 

⋯ 

prediction(t + n)  =  model𝑛(value(t − 1), value(t − 2), . . . , value(t − n)) 

 

The direct multi-step strategy was adopted for the price forecasting tool, as it becomes clear from the 

above equations that in the recursive strategy the final forecasting contains the accumulated error from 

the previous forecasts. The only drawback for the direct strategy is that the development of many models 

adds a computational effort, especially when the number of the steps increase.  

 

After drawing up the strategy for the forecasting models, the selection of the input features follows.  A 

table containing the input features is provided below: 

 

Table 1. Input parameters for the day-ahead/intra-day price forecasting engine. 

Prediction 

Type 
Execution 

Time 
Time 
Resolution 

Input Features Number of 

GBTs 
outputs 

Day-ahead 
 

Every 

midnight 
30 minutes  48 values of historical 

price data 

 48 values of historical 

volume data 

 48 values of forecasted 

day ahead generation 

data 

48 48 price forecasting 

values 
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 48 values of forecasted 

day ahead demand data 

 2 values of month of 

forecasted step (sinus, 

cosinus) 

 2 values of weekday of 

forecasted step (sinus, 

cosinus)  

 2 values of time of 

forecasted step (sinus, 

cosinus)  

Intraday Every 30 

minutes 
30 minutes  48 values of historical 

price data 

 48 values of historical 

volume data 

 48 values of forecasted 

day ahead generation 

data 

 48 values of forecasted 

day ahead demand data 

 2 values of month of 

forecasted step (sinus, 

cosinus) 

 2 values of weekday of 

forecasted step (sinus, 

cosinus)  

 2 values of time of 

forecasted step (sinus, 

cosinus)  

48 adaptive number of 

price forecasting 

values 

 

As it was mentioned in the previous section the intraday is utilizing the same model as the day ahead 

with the only difference being that the day ahead is executed only at midnight using only the previous 

days data, whereas the intraday is executed every thirty minutes based on the most recent historical 

values. The features listed in the table above were based on the literature and on experiments as well. 

Representative figures of day ahead demand, aggregated generation and historical volume data for the 

period of one week are depicted respectively: 

 

 

Figure 3. National day-ahead load forecast for one week 
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Figure 4. Aggregated day-ahead generation forecast for one week 

 

 

Figure 5. Historical volume data for one week 

 
For the training, the GBT (Gradient Boosting Tree) was utilized for each model of each time horizon 

respectively. Gradient boosting is a general term referring to a class of ensemble machine learning 

algorithms that can be used for predictive problems. The construction of the ensembles consists of 

decision tree models. At each moment of the training a new tree is added and fit to correct the errors 

made by prior models. This type of training is known as boosting. More specifically a variant of GBT 

was utilized, namely the LightGBM, short for Light Gradient Boosting Machine. LightGBM [24] is a 

relatively new algorithm and is becoming more and more popular, due to its superior performance in 

terms of speed and accuracy, especially in predictive problems. While other algorithm trees grow level-
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wise, LightGBM is growing vertically, meaning that LightGBM grows leaf-wise. The leaf with max 

delta loss is chosen, resulting in a better accuracy. Finally, LightGBM can handle large datasets and 

takes lower memory, increasing the execution time of the training. Below a table with the comparison 

results between training models are provided. The evaluation of the models is conducted in terms of 

accuracy based on regression metrics and execution speed. 

 

Table 2. Summary results of the deployment of different ML models 

Forecasting 

Methods 

SMAPE(%) MAPE(%) RMSE(£) Execution 

Time  

Light Gradient Boosting Machine 

(LightGBM) 

6.44 1.59 7.14 122.58 

Extreme Gradient Boosting (XGBoost) 6.84 1.76 7.5 190.84 

Multilayer Perceptron (MLP) 7.38 1.93 7.59 390.97 

 

The training of the algorithms was carried out with three months of historical data, including all the 

features described above. The last week of the historical data was used for the evaluation and the testing 

of the accuracy. Three different models were implemented and LightGBM surpassed the other two 

models, both in accuracy and execution time respectively. XGBoost and MLP were selected as 

alternatives for the training of the models, because these specific algorithms are widely used for 

predictive problems as well.  For the evaluation of the results three indicative regression metrics were 

used, namely root mean squared error (RMSE), symmetrical absolute percentage error (SMAPE) and 

weighted root squared error (WRSE).  RMSE and MAE are classic error metrics for regression 

problems, so there is no need to elaborate further on their functionalities. WRSE is created in order to 

demonstrate the relative error in terms of magnitude of the evaluated price value and it is described by 

the following equation: 

 

WRSE =  

{∑ √(�̂�𝑖−𝑦𝑖)
2

𝑦𝑖

𝑀
𝑖=1 }

2

𝑀 ∑ 𝑦𝑖
𝑀
𝑖=1

 100% , where 

 

 �̂�𝑖:  forecasted price output at every time slot 

 𝑦𝑖:  actual price output power at every time slot 

 𝑀: number of forecasted steps ahead  

 

A figure with the comparison between the actual and forecasted prices for the period of one week having 

as inputs the aforementioned features is illustrated below: 
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Figure 6.Price forecasting results for one week 

 

4.1.2.3 Real Time Forecast: 

 

The last step of the forecasting tool is the day-ahead and intra-day price forecasting. During the real 

time prediction the pre-trained model is loaded. The day ahead forecast is executed every midnight at 

12:00 a.m. and the intraday forecast is updated every forecast step and adjusts the predictions to the 

latest changes of price value by using as input features the most recent historical data (historical price 

data, historical volume data etc.). An example of a real time comparison between day-ahead and 

intraday price forecasting is given below: 

 

 

Figure 7. Day-ahead and intraday real time forecast for a certain day 

 

In the figure above the real time price forecast of day-ahead and intraday for a certain day is depicted. 

The blue line corresponds to the day-ahead price forecasting, while the red line to the intraday. The 

intraday price forecast presents a discontinuity as the intraday forecast was executed only once in the 

middle of the day only for experimental reasons in order to show the functionality of the specific 

module. 
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 Net Imbalance Volume Forecasting  

First attempts of Net Imbalance Volume (NIV) Forecasting were presented in D4.3. In general NIV, is 

a highly correlated feature with the Price of the Imbalance Market. Hence, an accurate prediction of this 

metric could potentially lead to a more accurate Imbalance Price Forecasting. In D4.3, the most effective 

designed model had Mean Squared Error (MSE): 47699 and RMSE 218. The following tables display 

the results of the latest attempts.  
 

 

Figure 8. Error Metrics of NIV models in D4.3 

    

As a sequel to the previous efforts, this section presents an endeavour to reduce the error metric through 

a data enhancement and model design perspective. Adding more complexity to the designed models, as 

well as, the pursuit of data that can potentially affect the Imbalance Volume. Therefore, these topics 

constitute the pillars of this research. In terms of the model design, this section presents two neural 

networks architectures:  
 

 Long Short-Term Memory (LSTM)  

 Convolutional Neural Network (CNN).  

 
In a short analysis of our data, the figure below displays a violin plot for each month of the time period 

between 2017-2020. It is discernible that the Network anticipates more extreme Positive Imbalances in 

2020, while the Negative Imbalances have been reduced.    
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Figure 9. Violin Pilot Plot for each month of the Year. 

  
The initial model design approach focused on the Forecasting of the Imbalance Volume through a more 

complex LSTM model in conjunction with a Dense Network. In this approach, LSTM acts as a feature 

engineering model of two layers that takes as input, 336 previous values that reflect one week period 

and produce a 24 length output. This vector, consequently, is given as input to the Dense Network that 

is responsible for the predicted Value. The following figure displays the general architecture, some 

technical parameters’ values that have been configured towards optimal efficiency and the final 

Results.    

 

 

Figure 10. Network architecture, parameters and results. 

 

Dropout technique has been applied in LSTM layers in order to avoid overfitting during the training 

process, while a controlled reduction in the learning rate per four epochs, ensured a smooth reduction 

of the error towards the exploration of the global minimum. 

 

As far as CNN is concerned, smoothing techniques are utilized before the training of the model as a 

pre-processing step based on the fact that in time series analysis, these techniques affect the model’s 
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training phase positively. At the same time, in a convolutional network the first two layers -

convolutional layer and pooling layer- perform smoothing and the rest of the layers use the smoothed 

raw data for prediction. Thus, a 1-d convolutional neural network with a fixed length window 

architecture has been applied and the results are depicted in Table 3. 

 

Taking into account the outcome of the CNN model compared to the LSTM approach, the second seems 

to have superior performance. Hence, the research focused on the development of the aforementioned 

LSTM model. Additionally, a further investigation in data enhancement through an expansion of our 

dataset took place, inserting training data from the time period 2015-2017. Except from the extension 

of our dataset with regard to the time range, the feature selection research showed that energy markets 

prices and weather data contribute towards minimizing the forecasting error, thus they were included 

in the training data. More specifically, forecasted Wind offshore generated energy seems to have the 

highest impact in the model, while forecasted generated solar energy has the lowest one. In order to 

prove this assumption, Figure X presents the correlation of the weather and price features with the NIV 

values. Hence, the collection of previously mentioned values and feeding those into the LSTM model 

led to much better results. 

  

Table 3. LSTM and CNN Results 

MODEL MSE RMSE MAE 

CNN 44672 210 161 

LSTM 40323 200.8 152.398 

 

 

Figure 11. Features Correlation with the NIV 
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 DELTA DSS Implementation 
 

In the context of the DELTA project, the aggregator functions as a Virtual Power Plant (VPP), that is a 

network of decentralized low and medium scale electricity producers, such as wind farms and 

photovoltaic parks, as well as flexible power consumers and storage systems. The final users do not 

directly communicate with the aggregator. Instead, they are grouped in semi-independent clusters called 

DELTA Virtual Nodes (DVNs) which function as a layer in between the central agent and the final 

users and a detailed description about their structure is provided in Deliverable D3.2.  
 
In this chapter we describe our proposed approach for the implementation of the Decision Support 

System of the DELTA aggregator. The aggregator is mainly responsible for two fundamental tasks. 

First, is to serve external DR requests from the grid operator. Details about this task are provided in the 

next section. The second and most cumbersome task of the aggregator is the optimal participation in 

the electricity markets. In the following sections we further deploy the details of the addressed problem 

and we propose a multi-stage stochastic optimization approach in order to optimize the decision-making 

procedure and maximize the aggregator’s profits. Additionally, we describe in detail a mechanism for 

forecasting and scenario generation which is necessary for the optimization procedure. Finally, we 

present some first results in the section of simulated experiments. 
 

 Instant DR Service (IDS) 

DR signals can be generated for multiple reasons and from several Sources. Either the objective is to 

develop, as an aggregator, a profitable DR strategy or to service an upper layer’s demand, aggregator’s 

responsibility is to manage all the available assets in the most efficient way that will lead to the 

fulfilment of its mission, to deliver a specific demand. One of the time constraints that concerns the IDS 

and the conformance to current DR policy is the fact that the assets/customers that manage to deliver a 

DR signal, should be noticed five hours earlier before the starting time of the DR.    
 
This subsection concerns the instant DR service of signals that are generated from DSO/TSO or the 

GSSE component in order to preserve the network’s grid stability. This type of signals contain 

information about: 
 

 the amount of the demand 

 the direction of the demand 

 and the time period that needs to be serviced 

    
As it is presented in D4.2, Energy Portfolio and Segmentation engine undertakes the Segmentation task 

of the total energy portfolio to individual Energy assets (DVNs). SPEB module as a subcomponent of 

DSS engine is responsible to select the participant DVNs to the corresponding DR according to 

reliability and fairness indicators. The final phase of the DR completion necessitates the distribution of 

the demand amount to the corresponding DVNs participants. The following figure displays the general 

architecture of the aggregator’s layer.  
 
In terms of the communication mechanism between all these components, the incorporation of CIM 

and jsonLD ontology to the DELTA ecosystem provides interoperability, security and compliance to 

the OpenADR communication model. Furthermore, all interactions and exchange of messages are 

recorded in the Blockchain system for more transparency and security reasons. Additional information 

about Secure Information exchange are described in D5.1 and D5.2.  
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Figure 12. Workflow of the Aggregator’s ecosystem 

 

IDS addresses this problem sharing the available assets’ flexibility according to the reliability metric. 

The following equation describes the logic of this sharing: 

 

𝐴𝐹 = ∑ (𝐴𝑚𝑜𝑢𝑛𝑡𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑉𝑁 ∙ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑉𝑁)

𝑖+𝑛𝑃

𝑠=1

 

 

where: 
𝐴𝑚𝑜𝑢𝑛𝑡𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑉𝑁: Total available flexibility of the corresponding DVN 
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑉𝑁: Reliability metric of the corresponding DVN 
𝑛𝑃: The number of DVNs that will participate in a specific DR according to the SPEB results. 
𝐴𝐹:  Represents the Aggregated flexibility of the participant DVNs in conjunction with their 

reliability metric. 
        

For each DVN estimate the ratio of the corresponding DVN in terms of the Aggregated Flexibility of 

the participant DVNs through this equation: 
 

𝑅𝑎𝑡𝑖𝑜𝐷𝑉𝑁 =
𝐴𝑚𝑜𝑢𝑛𝑡𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑉𝑁 ∙ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑉𝑁

𝐴𝐹
 

 
where: 
𝑅𝑎𝑡𝑖𝑜𝐷𝑉𝑁: This ratio represents the ratio of the DVN’s flexibility combined with its reliability in 

relation with the AF. Additionally this ratio reflects the ratio of the contribution of each DVN in case 

of a Demand Response signal. 
 
  
This ratio expresses the percentage of the contribution of each DVN to the total Demand, while the 

Contribution of each DVN is expressed from the following equation:  

 
𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑉𝑁 = 𝐷𝑒𝑚𝑎𝑛𝑑𝐴𝑚𝑜𝑢𝑛𝑡 ∙ 𝑅𝑎𝑡𝑖𝑜𝐷𝑉𝑁 

 

where: 
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𝐷𝑒𝑚𝑎𝑛𝑑𝐴𝑚𝑜𝑢𝑛𝑡: Expresses the total demanded amount of Power Deviation. 
𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑉𝑁: Expresses the demanded amount of Power deviation of a corresponding DVN  
 

In case that the final extracted contribution of the respective DVN exceeds its total flexibility 

capacity, a mechanism is activated to distribute this excess of the corresponding asset to the remainder 

assets through the max min fairness algorithm. 

 
𝐸𝑥𝑐𝑒𝑠𝑠𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝑉𝑁 = 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑉𝑁 − 𝐴𝑚𝑜𝑢𝑛𝑡𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑉𝑁 

 
𝐶𝑅 = 𝐶𝑅 + 𝐸𝑥𝑐𝑒𝑠𝑠𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝑉𝑁 

Where: 

 
𝐸𝑥𝑐𝑒𝑠𝑠𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝑉𝑁: The excess of Power that is demanded  to be delivered from a specific DVN  
𝐶𝑅: Represents the excess of energy that should be delivered from the remainder DVNs in order to 

find all the resources that match the demand. 
 

This process repeats recursively generating some possible scenarios: 

 
 The rest of the assets can satisfy the excess demand. 

 One of the assets cannot serve the excess demand and the inner excess is shared among the 

rest of the assets. This process runs recursively, until the moment that there are no remainder 

DVNs. 

 The scenario that demands cannot be satisfied from the participant DVNs and aggregator 

imports external DVNs. 

 

 

 Optimal Participation in Energy Markets  

The DELTA aggregator is responsible to handle assets such as renewable energy sources, battery 

storages, and flexible consumption in order to make bidding decisions in markets with uncertain prices. 

Naturally, there is a high degree of uncertainty involved concerning the electricity generation of 

renewables, the flexibility of consumption and most importantly the prices in the electricity markets. 

Thus, we propose a multi-stage stochastic optimization approach for optimal participation in day ahead, 

intra-day and imbalance markets as described in chapter 2. In its first formulation, the proposed 

algorithm results to be a convex optimization scheme.  

 

Stochastic optimization implies that uncertainty is dealt with by employing different scenarios with a 

corresponding probability of occurrence, so as to maximize the aggregator’s profit over a whole set of 

possible scenarios. In the following subsections we further deploy the details of the proposed algorithm, 

together with the necessary constraints that describe the set of feasible solutions.  

 

5.2.1 Two-stage stochastic optimization 

 

Given the nature of the participation in the electricity markets problem, a two-stage (multi-stage in 

practice) stochastic optimization approach is proposed. A stochastic optimization approach implies that 

the uncertainty related to RES generation, flexibility and electricity prices is considered by employing 

scenarios which represent several realizations of the related random variables.  A two-stage stochastic 

approach considers two kinds of variables: first stage and second stage variables. First stage variables 

are associated with decisions to be made before random variables take values and second stage variables 

are associated with decisions to be made depending on the first stage decisions and realizations of 

random variables. Thus, the two-stage stochastic optimization aims to find an optimal solution which 

includes decisions made in consecutive sessions in different markets and conditions. 
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A generic form of the objective function for a two-stage stochastic optimization problem is: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓(𝑋) + 𝐸[𝑔(𝑋, 𝑌, ξ)],  
 

where 𝑋 is the set of first stage variables which are not scenario dependent variables. On the other hand, 

𝑌 is the set of second stage variables, which are scenario dependent variables. Lastly, 𝜉 is the set of 

random variables and the operator 𝐸 computes the expected value of function 𝑔. The problem of optimal 

participation in the electricity markets can be formulated as a two-stage stochastic optimization problem 

by considering as first stage variables the decision variables that are to be made in a current market 

session and as second stage variables the decision variables that are to be made in future sessions. 

 

 

5.2.2 Objective Function  

 

For the purpose of problem formulation we form the list of related variables, which are presented in the 

following table. 

 

Table 4. List of symbols and variables 

Sets and subindex Decision variables 

S set of scenarios Pt
res RES power actually used (MW) 

s subindex of scenarios, s=1,...,Ns Et
ess Energy stored (MWh) 

t subindex of time slot, t=1,...,T Pt
ess,in Power charging the storage (MW) 

Parameters Pt
ess,out Power delivered by the storage (MW) 

T number of periods, let it be 24 Ps,t Power to/from the aggregator (MW) 

Ns number of scenarios Pt
dam Power committed in DAM (MW) 

ρs probability of scenario s Pt
idm Power committed in IDM (MW) 

Pess maximum power to/from battery  Δt
im Deviation in IM (MW) 

Random variables 
  

βt
dam,βs,t

dam energy price in DAM (€/MWh) 
  

βt
idm,βs,t

idm energy price in DAM (€/MWh) 
  

λt
im,λs,t

im energy price in IM (€/MWh) 
  

Ps,t
res RES power available (MW) 

  

 

The maximization of the aggregator’s profit, as if a single IDM session is considered, can be expressed 

as 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑(β𝑡
𝑑𝑎𝑚 ∙ 𝑃𝑡

𝑑𝑎𝑚 + 𝛽𝑡
𝑖𝑑𝑚 ∙ 𝑃𝑡

𝑖𝑑𝑚 + λ𝑡
𝑖𝑚 ∙ Δ𝑡

𝑖𝑚)

𝑇

𝑡=1

 

The first two terms refer to the net income for participating in DAM and IDM, whereas the third term 

accounts for the implications of deviation with respect to the commitments acquired in DAM and IDM. 
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These deviations are handled by buying/selling energy in the imbalance market (IM). The proposed 

optimization scheme can be also expressed as a minimization problem as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − ∑(𝛽𝑡
𝑑𝑎𝑚 ∙ 𝑃𝑡

𝑑𝑎𝑚 + 𝛽𝑡
𝑖𝑑𝑚 ∙ 𝑃𝑡

𝑖𝑑𝑚 + 𝜆𝑡
𝑖𝑚 ∙ Δ𝑡

𝑖𝑚)

𝑇

𝑡=1

 

As it was mentioned previously, energy price for all markets, RES generation and flexibility of 

consumption are random variables. In order to deal with the uncertainty that is implied by those 

variables, we need to define a set of scenarios with an associated probability of occurrence, which is 

denoted as 𝜌𝑠. Finally, the optimization scheme, considering stochastic programming can be expressed 

as  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − ∑ ρ𝑠 ∙ (∑(𝛽𝑠,𝑡
𝑑𝑎𝑚 ∙ 𝑃𝑡

𝑑𝑎𝑚 + 𝛽𝑠,𝑡
𝑖𝑑𝑚 ∙ 𝑃𝑡

𝑖𝑑𝑚 + 𝜆𝑠,𝑡
𝑖𝑚 ∙ Δ𝑡

𝑖𝑚)

𝑇

𝑡=1

)

𝑁𝑠

𝑠=1

 

It should be noted that the multiplicity of stages of the stochastic programming optimization is not 

apparent, because it is not actually considered in the expressed scheme above.  

 

 

5.2.3 Modeling flexibility 

 

As it was thoroughly described in chapter 3, there are multiple control policies that are applicable on 

demand response strategies. In the context of the DELTA project, there are basically two policies that 

are under consideration, which facilitate DR strategies for different types of DR requests and types of 

final users. First, a form of direct control policy and second a form of incentive-based indirect control 

policy are considered. Both approaches are described in the following subsections. 

 

5.2.3.1 Direct control policy 

 

In direct control policy considered in the context of the DELTA project, several assumptions are made 

in order to facilitate the formulation of the problem. Specifically, in this approach the flexible approach 

is assumed to be a portion of the total consumption that is always available to be reduced on demand of 

the aggregator. In other words, in this case the aggregator is able to request load dispatch for a specific 

amount of power from a DVN. The actual amount of flexible consumption from a certain DVN can 

additionally be characterized by a degree of reliability, depending on the historical ability of that 

particular DVN to deliver an amount of flexible power. The behaviour of this kind of flexibility is better 

illustrated in the following figure, where different degrees of reliable flexibility are represented by 

different colours in the bottom of the plot. 
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Figure 13. Example of flexible consumption with corresponding reliability 

 

It should be noted that for practical reasons, trading flexible consumption is profitable only in periods 

where selling price of electricity in real-time market is high enough, for example higher than the retail 

market price. 

 
Although modelling flexibility in the way that it was described in this subsection is convenient and easy 

to handle, it is nevertheless not very practical. Specifically, in the context of the DELTA project, 

information about which part of the consumption is flexible is not available. Instead, flexibility is an 

abstract measure of how much the final prosumers deviate from their usual consumption habits. 

Additionally, direct load dispatches are not always feasible in the DELTA approach. To conclude, a 

direct control policy is useful, yet it is not sufficient to model all internal demand response tasks 

performed into the DELTA Virtual Power Plant infrastructure. 

 

5.2.3.2 Indirect control policy using Reinforcement Learning 

 

To overcome the practical obstacles of direct control policy for demand-side management described in 

the previous paragraph, one should examine the alternative of an indirect control policy. In this case, 

the aggregator issues financial incentives to the final users using a signal, via the DVNs, in order to 

alternate their consumption behaviour. The reaction of the final users to the incentives given is a 

stochastic phenomenon and thus the aggregator is not able to develop a straight forward optimal 

strategy. To deal with this problem Reinforcement Learning has been proposed in the literature as a 

technique that can be used to train the aggregator to follow an optimal incentive policy that would 

maximize its profits [25]. In the context of the DELTA project, Reinforcement Learning, as in the 

following figure, has been proposed and is being examined so as to deal with optimal demand-side 

management. In the following paragraphs, the main components of the Reinforcement Learning 

approach considered in the DELTA project are deployed. 
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Figure 14. Reinforcement Learning scheme 

 

Aggregator-agent model: In the DELTA architecture, the aggregator is interconnected with the DVN 

layer and thus direct communication with the final users as in [25] is not feasible. As a result, its 

uncertain environment is a number of DVNs which play the role of aggregated customers. Naturally, 

the objective is to find the optimal incentive 𝜆𝑛,𝑡 for 𝑛 = 1. … , 𝑁 , where 𝑁 denotes the total number 

of DVNs and 𝑡 = 1, ⋯ , 𝑇, in order to maximize its profit. Assuming that the aggregator is planning to 

trade the reduced power to the real-time wholesale market, that is the imbalance market, its objective is 

to maximize its revenue in that particular market while minimizing the incentive payments to the 

customers-DVNs. This can be expressed as:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑(λ𝑡
𝑖𝑚 ∙ Δ𝐸𝑛,𝑡 − 𝜆𝑛,𝑡 ∙ Δ𝐸𝑛,𝑡)

𝑇

𝑡=1

𝑁

𝑛=1

 

𝜆𝑚𝑖𝑛 ≤  𝜆𝑛,𝑡 ≤  𝜆𝑚𝑎𝑥 

where λ𝑡
𝑖𝑚 denotes the price from the imbalance market at hour t, Δ𝐸𝑛,𝑡 and 𝜆𝑛,𝑡 are the demand 

reduction offered by, and incentive rate paid to the 𝑛𝑡ℎ  DVN at hour t. In the inequality, 𝜆𝑚𝑖𝑛 and 

𝜆𝑚𝑎𝑥 are the lower and upper bounds of incentive rate 𝜆𝑛,𝑡 , which in practice can be decided by a 

contract between the aggregator and the final users, so as to protect both sides’ profit. 

 

Customers’ model - DVNs’ model: When informed of the incentive rate by the aggregator via the 

corresponding DVN, each final customer tries to maximize its incentive incomes by decreasing its 

energy consumption. However, reducing consumption can cause discomfort for the customer, which is 

most commonly modeled as a dissatisfaction cost. Thus, the goal of the customer is to maximize a 

mixture of incentive income minus a dissatisfaction cost as:  

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑[𝜌 ∙ 𝜆𝑛,𝑡 ∙ Δ𝐸𝑛,𝑚,𝑡 − (1 − 𝜌) ∙ 𝜙𝑛,𝑚,𝑡(Δ𝐸𝑛,𝑚,𝑡)]

𝑇

𝑡=1

 

Δ𝐸𝑛,𝑚,𝑡 = 𝐸𝑛,𝑚,𝑡 ∙ 𝜉𝑡 ∙
𝜆𝑛,𝑡−𝜆𝑚𝑖𝑛

𝜆𝑚𝑖𝑛
  

K𝑚𝑖𝑛 ≤ Δ𝐸𝑛,𝑚,𝑡 ≤ K𝑚𝑎𝑥 
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The first term in the maximization expression denotes the incentive income of the 𝑚𝑡ℎ customer under 

the 𝑛𝑡ℎ DVN at hour 𝑡 by providing demand reduction Δ𝐸𝑛,𝑚,𝑡. The second term represents the 

dissatisfaction cost of that particular customer for the corresponding demand reduction. 𝜌 ∈ [0,1] is a 

weighting factor indicating the relative importance between the customer incentive income and 

discomfort. In the second equation, the variable Δ𝐸𝑛,𝑚,𝑡 denotes the demand reduction amount of the 

𝑚𝑡ℎ customer under the 𝑛𝑡ℎ DVN at hour 𝑡, in which 𝐸𝑛,𝑚,𝑡 denotes indicates the energy demand of 

the same customer at that time slot. The variable 𝜉𝑡 is the elasticity coefficient at hour 𝑡 that denotes the 

ratio of energy demand change to incentive ratio variation. 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 are the lower and upper 

bounds for demand reduction.  

The dissatisfaction cost function 𝜙𝑛,𝑚,𝑡(Δ𝐸𝑛,𝑚,𝑡) represents the degree of discomfort that a customer 

may experience when decreasing its energy demand. It is defined to be convex and it is expressed as:  

𝜙𝑛,𝑚,𝑡(Δ𝐸𝑛,𝑚,𝑡) =
𝜇𝑛,𝑚

2
∙  (Δ𝐸𝑛,𝑚,𝑡)

2
+ 𝜔𝑛,𝑚 ∙ Δ𝐸𝑛,𝑚,𝑡 

The parameters 𝜇𝑛,𝑚 > 0 and 𝜔𝑛,𝑚 > 0 are dependent on the customer. Specifically, 𝜔𝑛,𝑚is an 

auxiliary coefficient of the dissatisfaction cost function and the larger it is the higher the associated 

discomfort is. The parameter 𝜇𝑛,𝑚 reflects the attitude of a customer with respect to electricity demand 

reduction. A larger 𝜇𝑛,𝑚 implies that the customer is tolerant to less demand reduction and less 

discomfort. 

As it is noted previously, in the DELTA architecture the aggregator has no access in the individual 

information of each customer. Instead it has access to the aggregated values of a DVN. For instance, 

the aggregated demand reduction is expressed as:  

Δ𝐸𝑛,𝑡 = ∑ Δ𝐸𝑛,𝑚,𝑡

𝑀𝑛

𝑚=1

 

where 𝑀𝑛 denotes the number of prosumers that are under the 𝑛𝑡ℎ DVN. The optimization scheme in 

[25] includes both the profit of the aggregator and the profit on DVN side can be expressed as  

max ∑ ∑{𝜆𝑡
𝑖𝑚 ∙ Δ𝐸𝑛,𝑡 − 𝜆𝑛,𝑡 ∙ Δ𝐸𝑛,𝑡 + 𝜌 ∙ 𝜆𝑛,𝑡 ∙ Δ𝐸𝑛,𝑡 − (1 − 𝜌) ∙ ϕn,t(Δ𝐸𝑛,𝑡)}

𝑇

𝑡=1

𝑁

𝑛=1

 

In the context of the DELTA project the behaviour of the final users is not considered known. As a 

result, the discomfort cost is not available to be used in the optimization of the aggregator.  

Reinforcement Learning: RL is a machine learning algorithm allowing an agent to automatically 

determine the ideal behaviour in a stochastic environment, so as to maximize the cumulative reward 

[13]. 

RL is most commonly considered in the context of Markov decision process framework [26], which 

exhibits the Markov property that the state transitions are dependent only on the current state and current 

action taken, independently of all prior environmental stages or agent actions [25]. In the case of the 

DELTA architecture, we consider as reward the profit and as state  the wholesale electricity price, which 

do not depend on the historical data. The key components that need to be modeled are a discrete time 

slot 𝑡 ∈ 𝑇, a state  𝑠𝑛,𝑡 ∈ 𝑆(𝜆𝑡
im), an action 𝑎𝑛,𝑡 ∈ 𝐴(𝜆𝑛,𝑡) and a reward 𝑟(𝑠𝑛,𝑡, 𝑎𝑛,𝑡) ∈ 𝑅(𝜆𝑡

im, 𝜆𝑛,𝑡). 

For the learning procedure we employ the Q-learning algorithm, which is a model-free off policy 

algorithm in RL [27]. In Q-learning we seek to find an optimal policy 𝑣∗, which in our case will be a 

sequence of incentive rates for each DVN and for each time slot, depending on the current energy 
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demand reduction. The basic principle of Q-learning is the assignment of a Q-value 𝑄(𝑠𝑛,𝑡 , 𝑎𝑛,𝑡)  to 

each state-action pair at time 𝑡 ∈ 𝑇, and updating of this value at each iteration in a manner that 

optimizes the result. In practice, in each time slot the agent performs an action, and the Q-value of the 

corresponding cell is updated as follows: 

𝑄(𝑠𝑛,𝑡, 𝑎𝑛,𝑡) ← (1 − 𝜃) ∙ 𝑄(𝑠𝑛,𝑡 , 𝑎𝑛,𝑡) + 𝜃 ∙ [𝑟(𝑠𝑛,𝑡 , 𝑎𝑛,𝑡) + 𝛾 ∙ 𝑚𝑎𝑥𝑄(𝑠𝑛,𝑡+1, 𝑎𝑛,𝑡+1)] ,  

where 𝜃 ∈ [0,1]  is the learning rate representing the degree at which the new override the old Q-values. 

A value of 0 implies that the agent learns nothing, exploiting prior knowledge exclusively, whereas a 

value of 1 implies that prior knowledge is totally ignored and only current estimation is taken under 

consideration. Naturally, there is a trade-off between learning from new experience and exploiting 

existing knowledge which the designer should take into account by properly selecting a value of  𝜃  

between 0 and 1.  The term 𝑟(𝑠𝑛,𝑡 , 𝑎𝑛,𝑡) represents the expected reward from a particular action at a 

certain state, which in our case is the expected profit of the customers and the aggregator. The variable 

𝛾 ∈ [0,1] indicates the relative importance of future versus present rewards.  

In the Q-learning procedure, the agent directly interacts with the dynamic environment by executing 

actions. Then, the agent obtains a reward and moves to a new state, depending on the current state and 

action selected. The learning procedure is a result of trial and error during such iterations. After a 

sufficient number of iterations, the agent has interacted with the uncertain environment enough so as to 

have obtained an optimal policy. In other words, the Q-value gradually converges to a maximum. Since 

the Q-value represents the maximum reward with action 𝑎𝑛,𝑡 at state 𝑠𝑛,𝑡, the optimal policy is 

𝑣∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝑠𝑛,𝑡 , 𝑎𝑛,𝑡), which determines the optimal incentive rates at each state for a particular 

DVN. 

 

5.2.4 Constraints 

 

The proposed optimization scheme is subject to a number of constraints that define the feasible set of 

solutions. The complete optimization scheme considering a direct control policy as described above, 

including the objective function and the constraints can be expressed as: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − ∑ ρ𝑠 ∙ (∑(𝛽𝑠,𝑡
𝑑𝑎𝑚 ∙ 𝑃𝑡

𝑑𝑎𝑚 + 𝛽𝑠,𝑡
𝑖𝑑𝑚 ∙ 𝑃𝑡

𝑖𝑑𝑚 + 𝜆𝑠,𝑡
𝑖𝑚 ∙ Δ𝑡

𝑖𝑚 − 𝜆𝑡
𝑟𝑒𝑡 ∙ 𝑃𝑡

𝑓𝑙𝑒𝑥
)

𝑇

𝑡=1

)

𝑁𝑠

𝑠=1

 

 

𝑠. 𝑡 𝑃𝑡
𝑓𝑙𝑒𝑥

≥ 0 

𝑃𝑡
𝑓𝑙𝑒𝑥

≤ �̅�𝑡
𝑓𝑙𝑒𝑥

  

𝐸𝑡
𝑒𝑠𝑠 = 𝐸0

𝑒𝑠𝑠 + ∑ 𝜂𝑖𝑛𝑃𝑡
𝑒𝑠𝑠,𝑖𝑛 −

𝑇

𝑡=1

∑ 𝜂𝑜𝑢𝑡𝑃𝑡
𝑒𝑠𝑠,𝑜𝑢𝑡, ∀𝑡 ∈ 𝑇

𝑇

𝑡=1

 

𝐸0
𝑒𝑠𝑠 = 𝐸𝑇

𝑒𝑠𝑠 

𝐸𝑡
𝑒𝑠𝑠 ≤ �̅�𝑒𝑠𝑠 

𝑆𝑂𝐶𝑡 = 𝐸𝑡
𝑒𝑠𝑠/�̅�𝑒𝑠𝑠 

𝑃𝑡
𝑒𝑠𝑠,𝑜𝑢𝑡 ≤ �̅�𝑒𝑠𝑠 
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𝑃𝑡
𝑒𝑠𝑠,𝑖𝑛 ≤ �̅�𝑒𝑠𝑠 

𝑃𝑠,𝑡
𝑟𝑒𝑠 ≤ �̅�𝑠,𝑡

𝑟𝑒𝑠 

𝑃𝑠,𝑡 =  𝑃𝑠,𝑡
𝑟𝑒𝑠 + 𝑃𝑡

𝑒𝑠𝑠,𝑜𝑢𝑡−𝑃𝑡
𝑒𝑠𝑠,𝑖𝑛 + 𝑃𝑡

𝑓𝑙𝑒𝑥
 

Δ𝑡
𝑖𝑚 = 𝑃𝑠,𝑡 − 𝑃𝑡

𝑑𝑎𝑚 − 𝑃𝑡
𝑖𝑑𝑚 

𝑃𝑡
𝑒𝑠𝑠,𝑜𝑢𝑡, 𝑃𝑡

𝑒𝑠𝑠,𝑖𝑛, 𝐸𝑡
𝑒𝑠𝑠 ≥ 0 

𝐸𝑡
𝑒𝑠𝑠 ≤ �̅�𝑒𝑠𝑠 

−�̅�𝑒𝑠𝑠 ≤ 𝑃𝑑𝑎𝑚 ≤ �̅�𝑒𝑠𝑠 + �̅�𝑡
𝑟𝑒𝑠 

|𝑃𝑡
𝑖𝑑𝑚| ≤ 𝑃̅̅ ̅̅

�̅�𝑠𝑠 + �̅�𝑟𝑒𝑠, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

 

It should be noted that  𝑃𝑡
𝑓𝑙𝑒𝑥

 denotes the amount of flexible power reduction exploited from flexible 

consumption and 𝜆𝑡
𝑟𝑒𝑡 is the price of electricity in the retail market. Additionally, �̅�𝑡

𝑓𝑙𝑒𝑥
  denotes the 

actual flexible consumption that is available in each time slot of the day.  
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 Case Studies Implementation and Simulated experiments 
 

For sake of comprehension it is useful to present a number of different case studies in order to 

demonstrate the behaviour of the proposed algorithm. In the following subsections we employ 

hypothetical data with corresponding forecasts in order to illustrate how the bidding decisions are made 

by the algorithm and what are the main challenges that are met in the context of the DELTA project. 
 
For the needs of the simulations performed in this chapter we employ the definition of flexibility as it 

was described in subsection 5.2.3.1. Additionally, the optimization scheme presented in subsection 

5.2.4 is used. 

 

Moreover, we employ a scenario to demonstrate the Q-learning procedure that was described in 

subsection 5.2.3.2. Specifically, we illustrate the behaviour of the learning agent when seeking to 

optimize its incentive-based DR policy.  
 

 Forecasts and Actual Data 

For the purposes of the simulations we employ artificial data. First, hypothetical “actual” prices, RES 

generation available and flexibility of consumption are assumed. Next, the corresponding forecasts are 

created by adding uncertainty, in the form of random noise of variable amplitude, on the initial data. At 

last, “noise” data is fed to the algorithm which will be finally evaluated on the initial “actual” data. 

 

The values of the parameters of the aggregator’s assets are considered to be �̅�𝑒𝑠𝑠 = 5𝑀𝑊, �̅�𝑒𝑠𝑠 =
5𝑀𝑊ℎ, 𝐸0

𝑒𝑠𝑠 = 2,5𝑀𝑊ℎ, 𝜂𝑖𝑛 = 0.9, 𝜂𝑜𝑢𝑡 = 0.9 and 𝑆𝑂𝐶𝑚𝑖𝑛 = 0.05. 

 
Since the optimization in each day is performed independently, it is useful to consider different 

scenarios for each day to better demonstrate the behaviour of the algorithm. In the following table we 

present the main characteristics of each day-scenario. 

 

Table 5. Cases of the six days considered 

Day Basic scenarios for 6 days 

1 No RES 

2 No flexibility 

3 No flexibility, No RES, Bad forecasts in IM. 

4 No flexibility, No RES, Worse forecasts in IM, different prices 

5 Participation only in IM, No RES 

6 Fine forecasts, RES generation, flexibility 

 

For the first day we consider a regular set of market prices together with some flexibility of 

consumption, yet we assume no RES generation. In the case of the second day, same set of 

prices is considered and no flexibility of consumption. These first two cases are useful in order 

to demonstrate how profits fluctuate and how the algorithm reacts when having different 

combination of assets available. In day 3 we consider the combination of the previous two 

cases, together with noisy forecasts with respect to the imbalance market. Moreover, in the 

fourth day we employ a slightly differentiated set of prices and assume even more increased 
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uncertainty in the prices of the imbalance market. This case study is used to illustrate the risk 

of participating in the electricity markets with unreliable forecasts. In the case of the fifth day, 

we constrain participation in only IM to illustrate how the aggregator can profit when market 

arbitrage is not feasible. Finally, for the sixth day we select favourable conditions for the 

aggregator to demonstrate the profits when all assets are available and forecasts succeed to 

capture the behaviour of actual prices.  
 
In the following figure one can see the “actual” values for the prices in the three markets for all six days 

of this simulation. It is noted that the red line represents the DAM prices, blue line represents the IDM 

prices and finally the green line describes the prices in IM. 
 

 

Figure 15. Actual prices in six days (red: DAM, blue: IDM, green: IM) 

 
In the following figure one can see the “actual” values for the available RES generation and in the one 

after that, the corresponding values for available flexibility. 
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Figure 16. RES available in each of six days 

 

 

Figure 17. Flexible consumption available in each of six days 

As noted previously, forecast and scenario generation is a crucial part of the stochastic optimization. 

For the purposes of the current simulations we use artificially created forecasts. In the following figure 

the scenarios generated for market prices of each day are represented. 
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Figure 18. Forecasted prices in six days (red: DAM, blue: IDM, green: IM) 

 

 Results 

In this subsection the bidding decisions are presented for the cases described in the previous subsection. 

Specifically, in the following figure the decisions of the stochastic optimization are presented. In the 

figure after that, the corresponding bidding decisions considering a perfect information hypothesis are 

presented. 

 

 

Figure 19. Bidding decisions considering uncertainty 
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Figure 20. Bidding decisions considering perfect information 

 

In the following two tables we present the profits that result from the proposed optimization and given 

the data for the six days, as described previously. Specifically, we present the profit under uncertainty 

and the hypothetical profit in the case that perfect information is available. It is noted that the profit of 

the aggregator is calculated according to the following expression. 

 

𝑃𝑟𝑜𝑓𝑖𝑡 = ∑(𝛽𝑡
𝑑𝑎𝑚 ⋅ 𝑃𝑡

𝑑𝑎𝑚 + 𝛽𝑡
𝑖𝑑𝑚 ⋅ 𝑃𝑡

𝑖𝑑𝑚 + 𝜆𝑡
𝑖𝑚 ⋅ Δ𝑡

𝑖𝑚 − 𝜆𝑡
𝑟𝑒𝑡 ⋅ 𝑃𝑡

𝑓𝑙𝑒𝑥
)

𝑇

𝑡=1

 

 

Table 6. Net income per market considering uncertainty 

Net income (€) - considering Uncertainty 

Day DAM IDM IM Total 

1 1213 905 -954 1164 

2 2759 2813 -194 5578 

3 -1954 -4700 7104 450 

4 -2510 -7799 9980 -329 

5 0 0 216 216 

6 2140 120 3176 5436 
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Table 7.Net income per market considering prefect information 

Net income (€) - considering Perfect Information 

Day DAM IDM IM Total 

1 4195 1500 -4234 1460 

2 4195 420 1132 5747 

3 4869 420 -3920 1369 

4 9594 9419 -17326 1688 

5 0 0 240 240 

6 4869 1159 -191 5838 

 
As it can be seen from profits of day 4, forecasts’ failure to capture the behaviour of prices in the 

electricity market could lead to negative profits. In other words, forecast failure might lead to losses. 

Additionally, from results of day 5 it can be noticed that exclusive participation in IM does not allow 

high profits. This is reasonable given that in this case market arbitrage strategies are not feasible. At 

last, profits being much higher on day 2 and day 6 is due to the fact that in those two days RES 

generation is considered and thus more energy is sold to the markets 
 

 Q-learning for indirect control policy 

In this subsection, we present an example of the Q-learning algorithm for the purpose of optimal 

incentive-based DR strategy. The entire procedure seeks to find what is the optimal financial incentive 

given to a certain DVN based on the real-time wholesale electricity price, in order to maximize the net 

income of the aggregator. By contrast to the approach in [25] where the consumer behaviour is 

considered known, the DELTA aggregator assumes no knowledge about the DVNs’ reaction to certain 

incentive. The learning procedure is better illustrated by the following algorithmic steps. 

 

1. Initialize incentive rate bounds, demand reduction ranges, dissatisfaction cost parameters and 

weighting factor 𝜌 of each customer within a DVN. 

2. Initialize 𝑡 ← 0 and the Q-value 𝑄𝑡(𝑠𝑛,𝑡 , 𝑎𝑛,𝑡) ← 0 

3. Do: 

4.      Observe the wholesale electricity price 𝑠𝑛,𝑡 ∈ 𝑆(𝜆𝑡
𝑖𝑚) 

5.      Select an incentive rate 𝑎𝑛,𝑡 ∈ 𝐴(𝜆𝑛,𝑡) by 𝜖-greedy policy 

6.      Observe the demand reduction reaction of each DVN, Δ𝐸𝑛,𝑡 

7.      Compute the reward  𝑟(𝑠𝑛,𝑡 , 𝑎𝑛,𝑡) ← (𝜆𝑡
𝑖𝑚 − 𝜆𝑛,𝑡) ⋅  Δ𝐸𝑛,𝑡 

8.      Update the Q-value: 𝑄(𝑠𝑛,𝑡 , 𝑎𝑛,𝑡) ← (1 − 𝜃) ⋅ 𝑄𝑡(𝑠𝑛,𝑡 , 𝑎𝑛,𝑡) + 𝜃 ⋅ 𝑟(𝑠𝑛,𝑡, 𝑎𝑛,𝑡) 

9.      𝑡 ← 𝑡 + 1 

10. While |𝑄𝑡 − 𝑄𝑡−1| ≥ 𝜖 

11. Optimal policy is:      𝑣∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝑡(𝑠𝑛,𝑡, 𝑎𝑛,𝑡) 

 

The demand reduction that is provided by each consumer as a reaction to a certain financial incentive 

is the result of each final user’s consuming behaviour. Thus, Δ𝐸𝑛,𝑡 is modelled as the result of the 

following optimization scheme for each consumer/DVN: 
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑[𝜌𝑛 ∙ 𝜆𝑛,𝑡 ∙ Δ𝐸𝑛,𝑡 − (1 − 𝜌𝑛) ∙ 𝜙𝑛,𝑡(Δ𝐸𝑛,𝑡)]

𝑇

𝑡=1

 

K𝑚𝑖𝑛 ≤ Δ𝐸𝑛,𝑡 ≤ K𝑚𝑎𝑥 

As described in subsection 5.2.3.2. It should be highlighted that the real-time wholesale electricity price 

𝜆𝑡
𝑖𝑚 for the current hour is not known in the general case. Instead, as described in the previous section 

the participation in the imbalance market is performed by considering a forecasting mechanism. Yet, 

for the purposes of this subsection we consider real-time price to be known so as to demonstrate the 

behaviour of the proposed Q-learning algorithm  

 

6.3.1 Single customer DVN 

In this subsection we employ a hypothetical DVN which consists of a single customer so as to 

demonstrate how its specific characteristics affect the resulting demand reduction and of course the 

resulting profit of the aggregator. For the purposes of this simulation consider a customer with the 

following characteristics 

𝐶𝑈1 𝜇1 = 5 𝜔1 = 5 𝐾𝑚𝑖𝑛 = 0 𝐾𝑚𝑎𝑥 = 0.3 ⋅ 𝐸𝑛,𝑡 

For the learning procedure we need to specify what is the observation space and the action space. For 

this example we consider that 𝜆𝑡
𝑖𝑚 ∈ [15,50] and 𝜆𝑛,𝑡 ∈ [5,25], which denote currency per MWh. 

Additionally, for both state and action spaces we consider a quantization and a corresponding 

discretization in 10 values for each. As a result the Q-table will be a 10 × 10 table. Considering 

training over 500 iterations/episodes, 𝜖 = 0.9 and some details about the Q-table can be 

illustrated in the following figure. 

 

Figure 21 Learning curve for 𝝆𝟏=0.5 

As it can be seen, 200 episodes are enough for the Q-values to reach a plateau. In order to 

demonstrate the behaviour of the trained agent we employ some hypothetical real-time price 

data and a corresponding hypothetical demand curve. The resulting behaviour is illustrated in 

the following figures for three different cases of 𝜌1 value. The plots in blue describe the demand 

curve considering no financial incentives given to the customer and the plots in red describe 

the reduced consumption.  
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Figure 22 𝝆𝟏=0.1 

 

Figure 23. 𝝆𝟏=0.5 

 

Figure 24 𝝆𝟏=0.9 
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The resulting profits of the aggregator for each of the three customer cases are demonstrated in the 

following table. 

 

 Aggregator’s profit Customer’s profit 

𝜌1 = 0.1 255 € 367 € 

𝜌1 = 0.5 1444 € 1108 € 

𝜌1 = 0.9 5351€ 2492 € 

 

As it can be seen, the value of the variable 𝜌  represents the willingness of a certain customer to 

participate in the DR program. In other words, for a customer with a larger value of 𝜌 it is of higher 

priority to maximize its profits from the DR program than to minimize its discomfort. Naturally, the 

same approach can be extended to a case of a DVN consisting of multiple customers.  
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 Conclusions 
 

This report presented in detail the architectural design and implementation of the Decision Support 

System of the DELTA Aggregator. Targeting a more dynamic behaviour that can adapt in various 

markets within the day while also servicing other existing contracts. To achieve this the DELTA 

Aggregator has been developed with two core engines, one for servicing any direct incoming DR 

request, for example from the DSO due to another existing contract, and the second to identify and 

optimize the Aggregator’s participation to the day-ahead, intra-day and imbalance markets. For these 

two core components, a different implementation flow has been adopted, following cutting edge 

technologies. 

 

Towards that direction, and focusing on leveraging on multiple dynamic markets, further effort was 

denoted towards addressing uncertainty, which is inherent in the problem of optimal participation in the 

electricity markets, by expanding the forecasting market price engine developed through T4.3 to cover 

also the day-ahead and intra-day markets. Additional progress on the Net Imbalance Volume has been 

introduced as well.  

 

Building upon and enhancing other components, the DELTA DSS covers mechanisms for both instant 

DR and optimal participation to the DR markets. Investing on a two-stage stochastic optimisation 

approach which is enriched by a reinforcement learning technique, the DELTA Aggregator can 

“navigate” successfully through the different markets and delivers new revenue streams for both the 

Aggregator and the Customers.  

 

As the integration is finalised and the pilot deployment commences, it is expected to have further 

development of the Decision Support System of the DELTA Aggregator. For instance, as discussed in 

chapter 3, introducing indirect control policies for implicit DRs requires employing novel techniques 

such as reinforcement learning. Such improvements of the capabilities of the DELTA aggregator are 

part of the refinement that is necessary for the testing and final integration of the project. As such, the 

aforementioned updates will be further described in future reports. 
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