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Almeida  

Keywords: 
Demand response 
OpenADR 
Virtual power plant 
Optimisation 
Multi-agent 
Reliability 

A B S T R A C T   

Extracting and exploiting the flexibility of electric demand has been shown to reduce the needs of network 
upgrades and generation capacity increases. Demand Response (DR) in considered as one of the few available 
solutions for accessing the untapped energy potential of small and medium customers. Over the past decade, 
rigorous research has produced significant results in optimally dispatching DR in an attempt to maximize flex
ibility extraction. However, the vast majority of works assumes a “happy path” scenario in which DR requests are 
always successfully completed. Hence, there is a large gap in the literature that fails to account for non- 
deterministic factors that manifest in practical deployments, e.g., the stochasticity of end-user behavior that 
can drastically influence the DR’s outcomes. Investing on that notion, a novel, distributed, multi-agent system 
(MAS) that aggregates consumers and prosumers and handles automatically OpenADR-compliant DR requests is 
introduced, following virtual power plant (VPP) principles. Agents of the proposed MAS are able to service DR 
events originating from a higher level, e.g., Aggregators or Utilities, and optimally dispatch them to their 
assigned customers. The proposed framework ensures 100% DR success rate, compared to conventional methods, 
by not only optimally exploiting aggregated flexibility through a combination of clustering and optimisation 
engines, but also through a dynamic, bi-directional DR matchmaking process that can mitigate observed de
viations both internally (intra), as well as, externally (inter) in real-time. Via experimentation, we demonstrate 
the framework’s efficiency in ensuring technical DR fault-tolerance along with its ability to deliver savings of up 
to 3 orders of magnitude to Aggregators and the customers serving the DR requests.   

1. Introduction 

Demand Response (DR) programs provide a pivotal mechanism to 
energy grid operators in mitigating energy shortage or excess, thus, 
increasing the overall reliability and stability of energy grids (Directive 
(eu) 2019/944 o, 2019). The ever-increasing penetration of Renewable 
Energy Sources (RESs) (Share of energy from rene, 2020), Energy 
Storage Systems (ESSs) (Dusonchet et al., 2019) and Electric Vehicles 
(EVs) (New passenger car registr, 2019), gives rise to new opportunities 
for increasing profits of key energy stakeholders. These developments 
led to the emergence of new business models that revolve around, e.g., 
aggregation and virtual power plants (VPPs) (Tracking energy integrati, 
2019). However, these advances introduce additional challenges for grid 
operators regarding Demand-Side Management (DSM). As shown in 
recent work (McPherson and Cowiestoll, 1016), DR program 

applications lead to noteworthy production cost reductions, which is 
essentially the result from the substitution of thermal generation with 
renewable energy sources (RES). Correlations between the impact of DR 
programs and CO2 emissions demonstrate that, depending on the nature 
of each DR, direct (via peak load shaving/shifting and provision of 
ancillary services) and indirect (via increase in RES penetration and fuel 
usage decrease in thermal plants) reductions of CO2 emissions are 
possible (Violette and Shober, 2014). In general, the goal of increased 
clean energy supply implies the necessity for the provision of load 
flexibility in terms of minutes, hours and days-ahead (Hale et al., 2018). 
To that end, DR programs can provide the much needed flexibility 
without the instalment of expensive equipment. However, there are 
significant challenges in unlocking the hidden potential of demand-side 
flexibility and being able to deliver it in a reliable, fault-tolerant manner. 

In most cases around Europe where DR programs are available, 
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participation is restricted to industrial or large tertiary customers. This is 
attributed to the lack of an information and communication technology 
(ICT) infrastructure capable of optimally handling small/medium resi
dential and tertiary customers at large scales. However, the latter have 
been identified to possess a significant amount of flexibility which, 
currently, remains unexploited (Sioshansi, 2019). The potential of this 
untapped flexibility is further increased considering the introduction of 
prosumers, i.e., consumers that also produce energy. For instance, just 
by 2016, more than 33 GW of residential solar photovoltaics (PVs) had 
been installed in EU Member States, out of which 53% is exported to the 
grid (Study on residential pros, 2017). This is expected to rise even more 
due to the EU’s optimistic targets that aim towards a 32% RES share by 
2030 (Directive (eu) 2018/2001, 2018). 

Nevertheless, great benefits come with equivalent or even greater 
challenges. First, the drastic increase in the number of parties partici
pating in DR programs requires an ICT infrastructure that is horizontally 
scalable by design. Put simply, shifting to decentralized/localized 
monitoring and control strategies is required to handle this unprece
dented volume of, e.g., smart meters and DERs. Second, the higher level 
of uncertainty, which stems from the stochasticity of smaller scale 
customer behavior, effectively increases the risk of reliably achieving 
the target(s) of DR events involving them. Finally, significant technical 
disparities regarding, e.g., communication protocols among DERs and 
various energy stakeholders exist in practice. This interoperability issue 
has been identified as one of the most critical roadblocks in leveraging 
the benefits of DR programs in energy markets (Shafie-khah et al., 
2019). 

This work presents the design, implementation and experimental 
evaluation of a novel MAS-based ICT platform that addresses all of the 
aforementioned roadblocks, and others, that hinder the involvement of 
small and medium customers in current energy markets and DR pro
grams. The proposed MAS architecture is based on the introduction of a 
virtual node-based layer, where each agent is referred to as Distributed 
Virtual Node (DVN). DVNs are interconnected over a distributed, fault- 
tolerant peer-to-peer (P2P) communication network that employs 
industry-standard security and privacy techniques that are suitable for 
real-world deployments. DVNs are able to handle failures and/or de
viations of their assigned customer’s behavior even during the active 
period of dispatched DR events by employing a twofold mechanism. 
First, via an “Intra-Node Matchmaking” (IntraNM) algorithm that uti
lizes other available customers that the agent manages to make up for 
observed deviations. Second, in cases where the IntraNM approach fails, 
the agent employs an “Inter-Node Matchmaking” (InterNM) algorithm 
which, in short, involves other fellow agents to make up for the incurred 
deviation. This twofold approach is a first step in mitigating the risk of 
integrating small and medium customers in energy markets and, ulti
mately, delivering the requested amount of power/energy. To the au
thor’s knowledge, no prior work proposes mechanisms that are able to 
address such deviations. Through meticulous experimentation, it is 
demonstrated that the proposed framework exhibits a lucrative combi
nation of novel attributes. First, compared to prior works, the proposed 
MAS ensures a 100% success rate even in the presence of multiple fail
ures during the DR’s active period, the importance of which cannot be 
stressed enough, considering the necessities that give birth to DR re
quests. Second, the suite of optimisation algorithms presented is capable 
of delivering savings of up to 3 orders of magnitude for customers 
servicing a DR request. Third, the proposed MAS facilitates interoper
able participation of key energy stakeholders in energy markets and the 
establishment of stable revenue streams. Lastly, of independent research 
interest is an additional, indirect, significant outcome of the proposed 
matchmaking algorithms, which promote customer activity, awareness 
and responsiveness to DR requests, through the employment of a DR 
reliability index. 

The manuscript is organized as follows: Section 2 presents previous 
research endeavours related to the submitted work, highlighting limi
tations and challenges identified. In Section 3, the overall system 

architecture is presented, followed by the detailed implementation for 
the aspects explored. The experimental setup and the simulation results 
are elaborately documented and discussed in Section 4. Finally, in 
Section 5, we provide concluding remarks. 

2. Related work 

Multi-agent systems (MASs) provide several attractive properties in 
smart grid contexts, such as fault-tolerance, increased efficiency and 
reliability in the management of the underlying grid, and others (Mahela 
et al., Siano). Several prior works have employed MAS-based architec
tures to enable communications among energy stakeholders, partially 
distribute computational requirements for decision making processes to 
provide for increased adoption of DR programs (e.g., (González-Briones 
et al., 2018)). More recent works (e.g., (Shawon et al., 2019)) showcase 
that the decentralized, flexible, robust and autonomous nature of MASs 
positions them as ideal architectures for handling diverse sets of energy 
transactions and the introduction of new market roles, such as Aggre
gators (Woltmann et al., 2020) and VPPs (Pasetti et al., 2018). 

Initially, MAS deployments in the context of DR focused heavily on 
market-based schemes, i.e., the ability of agents to effectively interact 
with marketplaces (Praça et al., 2003) without, however, measuring the 
amount of energy/power delivered. More recently, the authors of 
(Golmohamadi et al., 2019) proposed a MAS architecture that bundles 
industrial and smaller-scale customers into market-specific agents. This 
approach, whilst inclusive of various customer preferences, relies on 
centralized optimisation and decision making processes. However, such 
approaches have been proven to be sub-optimal. Karfopoulos et al. 
(2015) have demonstrated that highly dynamic decision making pro
cesses are required to handle, among others, the volatility of RESs and 
the stochasticity of end-user behavior. In (Wang et al., 2018), the au
thors present a MAS that is limited in handling a narrow set of devices 
and end-users and was only evaluated for price-based DR events. 
Although results are promising, the proposed MAS is unable to handle 
the aforementioned uncertainties. 

From the tertiary perspective, the authors of (Gomes et al., 2019), to 
enable participation of small and medium players’s in DSM programs, 
introduce an agent-based architecture that optimises building automa
tion and balances demand and supply towards reducing the energy 
bought from the grid. Even though their MAS showcases quite inter
esting results, it also revealed some limitations that can be considered 
critical if they would take place during a real-world DR event (e.g., 
heavy passage of clouds), thus highlighting the need for fail-safe 
mechanisms in real-time operation. 

While there are numerous prior works providing numerical results 
demonstrating the benefits of MAS-based approaches, very few tackle 
the issue of quantifying DR reliability. Current proposals are limited to 
statically assigning a reliability metric (e.g., (Silva et al., 2020)) to 
end-users. Such approaches are unable to capture the real-time behavior 
of parties participating in DR events, whose targets need to be appro
priately adjusted to increase the probability of delivering the expect
ed/requested outcome. 

Muthirayan et al. (2019) propose a self-reported baseline mechanism 
as a means to eliminate the incentive of agents inflating their baselines 
to receive increased payments. While this work provides a useful 
framework for calculating agent reliability, it does not address failures 
regarding actual energy delivery and ultimately resorts in penalization. 
More recent works highlight the importance of accurate consumption, 
generation, flexibility and price forecasts in increasing the reliability of 
DR events (Wang et al., 2019). 

When examining the success rate of DR events, the overwhelming 
majority of research focuses on the incentives and the optimal selection 
of assets and resources for successfully delivering what has been 
requested (Parrish et al., 2020). On the contrary, there are very few 
findings on anticipating and identifying participants that are expected to 
default (Azuma et al., 2019), and none (to the authors knowledge) that 
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tackle the failure during the active period of the DR event. Furthermore, 
interestingly enough, scientific community seems more keen to impose 
penalties (Ghorashi et al., 2020) towards increasing success rates than 
presenting with mitigation mechanisms that can salvage the risk 
imposed by a defaulting participant. 

Another perspective that aims to increase DR success rate, is the 
employment of clustering solutions. Such techniques can provided for 
the design of effective DR strategies (Lin et al., 2019), the management 
of Aggregator’s and Distribution Network Operators’ portfolio (Gouveia 
et al., 1016), as well as, temporal and dynamic adoption of customer 
segmentation models (Benítez et al., 2014). At the same, time clustering 
can also serve as a complementary mechanisms in alleviating the 
computational overhead incurred while scaling up. The advent and 
installation of smart meters to residential houses has expanded the set of 
raw data sources towards sustainable energy development (Gouveia 
et al., 1016). In recent years, energy profile clustering has been 
approached from multiple perspectives and several methodologies have 
been proposed to decode the customer’s energy behaviour (Motlagh 
et al., 2019). Nonetheless, there hasn’t been sufficient bench-marking to 
justify the trade-off of employing clustering techniques even if the DR 
success rate drops. 

The present work, aims to address the aforementioned challenges. By 
proposing a highly scalable, interoperable, and efficient decentralized 
MAS architecture, a highly dynamic and rapid decision making process 
is ensured, easily applicable under any conditions or topologies. In 
addition, through a range of novel software components, the proposed 
framework is the first study of a real-time DR-fail-safe system, that can 
ensure the event’s success even under uncertain conditions, either due to 
volatile weather conditions, highly stochastic end-user behaviour, or 
even sub-optimal incentive strategies. Lastly, through thorough experi
mentation evidence, the use of each of the implemented components is 
justified, discussing the trade-offs in terms of success rate and compu
tation performance, which is frequently missing from similar findings. 

3. MAS architecture 

Firstly, the fundamental notions based on which the proposed MAS is 
designed. The starting point is the MAS’s ability to harness the, currently 
unexploited, flexibility that is readily available at smaller scales. 
Consequently, it immediately follows that the MAS should be horizon
tally and transparently scalable to handle an arbitrary amount of end- 
users that will provide this flexibility. To promote the large scale up
take of DR programs, there are additional properties that the MAS must 
provide. First, it must optimally dispatch the flexibility provided by end- 
users to, on the one hand, incentivize their participation and, on the 
other hand, promote clean energy principles. Second, it is imperative 
that the system provides for increased fault-tolerance during the active 
period of DR events to address end-user uncertainties, as was discussed 
previously. Lastly, OpenADR was chosen as the standard for encoding 
and communicating, e.g., DR events. energy-related reports and avail
ability schedules, due to its widespread adoption from both industry and 
academia. 

In Fig. 1, a high-level depiction of the system’s architecture is pre
sented, a descriptive overview of which is as follows. As illustrated, the 
MAS is composed by a set of independent virtual agents, to which we 
interchangeably refer to as DVNs. One of the focal points of each DVN is 
the “Monitoring and Profiling” component, whose functionalities are as 
follows. First, this is the entry point for new customers. The registration 
of a new customer is accompanied with data pertaining to her con
sumption, generation and storage capacities (if any), geolocation, the 
market contexts that she is willing to participate, and others. Second, 
this component is responsible for collecting and maintaining data per
taining to historical and forecasted consumption, generation, power 
flow and storage of customers. These are used as the basis for building a 
dynamic, per-customer profile that encompasses metrics pertaining to 
the accuracy of the reported forecasts and others that capture the reli
ability of the customer in the context of each individual market. The 
reliability metrics are output/updated by an in-house developed ma
chine learning model that incorporates marketplace-specific features. 

Fig. 1. High-level architectural view of the proposed MAS.  
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Lastly, based on the measurements and forecasts reported by its assigned 
customers, this component exposes aggregated historical and forecasted 
data. 

Agents input customer measurements and profiles to their “Customer 
Clustering” component (Section 3.1) to cluster their assigned customers 
based on various features, such as geolocation, type (consumer/pro
sumer) and their capacities. For each cluster, the agent produces a 
profile, which is directly involved in the decision making process for 
servicing input DR events. As the system is by nature dynamic, i.e., 
measurements, forecasts, customer behavior and reliability in the 
context of DR events may change over time, customers may be reas
signed among clusters. The “Optimal Dispatch” component (Section 3.2) 
is the focal decision point for servicing input DR events. This is a 
lightweight optimisation engine for consumers, prosumers and various 
DERs that are integrated into a unified optimisation problem and can 
cover multiple market contexts. Its objective function revolves around 
the minimization of the energy cost by taking into account parameters, 
such as the retail real-time price (RTP), customer cluster profiles and the 
virtual cost of their flexibility. Put simply, this component, on input an 
OpenADR request, outputs a set of optimal OpenADR requests, which 
are dispatched to a set of selected customers. 

Communication amongst agents and their individually assigned 
customers is facilitated via a highly-scalable and end-to-end secure peer- 
to-peer network (Section 3.5). To tolerate failures and/or deviations that 
occur during the active period of DR events, agents employ a twofold 
approach to make up for incurred losses. This accomplished by the 
introduction of two novel algorithms, i.e., the “Intra-Node Match
making” (IntraNM) and “Inter-Node Matchmaking” (InterNM), which 
are described in Sections 3.4 and 3.3, respectively. The following sub
sections are dedicated in elaborating on the detailed description of the 
aforementioned components, as well as, the implementation details of 
the proposed MAS. 

3.1. Customer clustering 

The main idea of this component is to employ customer flexibility 
profiles as a means to convey to the “Optimal Dispatch” component the 
potential of a customer set to (partially) service a DR request. Addi
tionally, this process reduces the optimisation’s computational overhead 
since it is input collective data of each cluster profile, instead of indi
vidual statistics. 

The proposed approach in the “Customers Clustering” implementa
tion is applied through the exploitation of flexibility measurement of 
each customer, which is provided from local intelligent units (George 
et al., 2020). This measurement can be further divided in positive and 
negative metrics. Positive flexibility is defined as the feasible positive 
power flow deviation compared to the baseline measurement at a spe
cific time period. Similarly, negative flexibility reflects an opposing 
feasible negative deviation from the baseline. As illustrated in Fig. 2, 

ΔFlexUp and ΔFlexDown represent these two flexibility modes for cus
tomers that have no generation capabilities. Based on these metrics, a 
reliability metric is derived that provides an evaluation criterion 
regarding a customer’s contribution in historical DR events. This facil
itates the correction of the initial measured flexibility and is expressed 
via the following equation: 

cF = mF⋅Rel (1)  

where, cF is the corrected flexibility, mF is the measured flexibility and 
Rel ∈ [0, 1] is the reliability metric. 

Depending on the nature of the DR request, different customer 
clustering profiles will be employed by the DVN. For instance, a DR 
request for energy consumption reduction will harness extracted infor
mation from the corrected downwards flexibility, whereas a DR request for 
energy consumption increase utilizes the corrected upwards flexibility. In 
order to apply temporal clustering for each customer that exhibits 
peculiar energy behaviour alterations, the calculated baseline corrected 
flexibility is segmented in 24 hourly periods that are independently 
examined by the clustering algorithm. 

Data pre-processing is the primary step of energy data analysis and 
consists of a sequence of individual tasks, i.e., outlier isolation, data 
standardization and data transformation to the frequency domain. As far 
as the outliers removal step is concerned, daily measurements from a 
specific customer that deviate from its baseline behaviour are identified 
and removed through a percentile analysis. More specifically, the 
euclidean distance of each daily time series measurements are estimated 
with regards to the baseline load (mean value). Next, the Signal-to- 
Noise-Ratio (SNR) indicator validates the fact that the power signal 
has been increased proportionally with the noise as an outcome of the 
outlier’s day removal for an initial percentile. In cases of increased noise 
interference, the selected percentile is configured appropriately focused 
on empowering the SNR indicator. The mean value of the remainder 
daily measurements is considered as a customer’s baseline. 

The next step involves the standardization of data in a (− 1, 1) range, 
which are subsequently transformed in the frequency domain. This 
transformation is achieved by applying the Continuous Wavelet Trans
form (CWT) method (Grossmann et al., 1989). The wavelet function of 
this transformation is the negative normalized second derivative of the 
Gaussian function (Ricker wavelet), which is typically referred to as the 
Mexican Hat wavelet and is represented by the following equation: 

ψ(t) = 2
̅̅̅̅̅
3σ

√
π1

4

(

1 − (
t
σ)

2
)

)

e
− t2
2σ2 (2) 

The fundamental advantage of CWT compared to Fast Fourier 
Transform (FFT) is its capability to construct time-frequency represen
tations of a signal that exhibits exceptional time and frequency locali
zation. Additionally, the CWT method can efficiently transform non- 
stationary signals and preserve time-dimension properties. 

The Affinity Propagation (AP) algorithm (Zhang and Song, 2011) has 

Fig. 2. Graphical representation of upwards and downwards flexibilities.  
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been selected to retrieve the groups of customers that share common 
flexibility characteristics during hourly time periods. A similarity matrix 
that includes the wavelet coherence between the baseline load profile of 
each customer compared to others is estimated and given as input to the 
AP algorithm. The proposed implementation calculates kernel similar
ities in higher dimensions to identify non-linear correlations across cF 
measurements that have been processed and transformed in the fre
quency domain. Moreover, in the proposed approach, a dynamic adap
tation of the algorithm’s parameters in terms of its efficiency is 
incorporated. Regarding the generated clusters, the AP algorithm has 
the property to detect the appropriate number of segmented groups 
autonomously. A crucial factor that affects this functionality is a “pref
erence” parameter that reflects a point’s inclination to consider itself as 
“exemplar”. Therefore, in cases where recent customer behaviors exhibit 
reduced credibility, the algorithm’s parameters affecting the estimation 
of the number of clusters are re-configured to optimally reallocate cus
tomers in different clusters. Lastly, this components outputs various 
statistics related to each cluster’s flexibility profiles, such as mean value, 
variance and the slope’s curve, which are consumed by other DVN 
components, as described in the following subsections. 

3.2. Optimal Dispatch 

Input DR signals must be broken down to a series of dynamic set
points to be dispatched to all eligible customers of the DVN. Although 
this could be achieved with a simple rule-based algorithm, a novel 
optimisation scheme (OptiDVN) has been developed, which aims to
wards not only satisfying the incoming DR, but also minimising the 
respective actual and virtual costs associated with the DR’s completion. 
The OptiDVN engine is a significant expansion of a recently published 
research work from the authors (Bintoudi et al., 2021). To facilitate 
reader understanding and provide for a concise description, a case study 
of an OpenADR load dispatch signal is discussed, where the active period 
is comprised by a series of time intervals, for each of which, a fixed 
power flow setpoint (algebraic value in Watts) is requested. The explicit 
case is assumed in which the DVN can directly control the customer’s 
assets, or by interfacing with an existing Building Management System 
(BMS). 

The basis of the optimisation algorithm is the modelling of each 
operational customer of the DVN as a unit of flexibility that is comprised 
by a series of virtual DERs (vDERs), e.g., energy storage systems (ESS, e. 
g., Li-ion batteries), small controllable photovoltaic units (PV). Given 
the different levels of abstraction introduced in this work, at the DVN 
level, each customer appears to have assets in an aggregated manner, 
meaning one overall load flexibility, one aggregated PV unit, one 
aggregated ESS unit etc. Implementation-wise, this component is 
developed in Python 3.7, whilst its core, i.e., the optimisation problem, 
is formulated using mixed-integer linear programming (MILP). The 
MILP solver selected is COIN-n-branch (CBC), an efficient and accurate 
open-source solver implementation for MILP optimisation problems. 

The optimisation problem is derived from a variation of the classic 
Unit Commitment Problem and, therefore, is formulated using as opti
misation variables the vDERs’ energy time series setpoints, com
plemented by auxiliary binary variables. The objective function, 
expressed by Equation (3) aims towards minimising the operational cost 
of a VPP in the context of an explicit load dispatch DR signal. The 
objective function is formulated to benefit the DVN’s customers and the 
pricing scheme selected is the real-time retail price. The associated costs 
for each vDER consists of the Levelised Cost of Electricity (LCoE) of the 
actual units (i.e., PV, ESS, WT) and a virtual cost for the upward/ 
downward load flexibility, which is calculated according each cus
tomer’s reliability. LCoEs are calculated according to typical values of 
investment costs, unit operation and losses. 

OF : min
∑N

n=1

∑T

t=1

[(
E+

flex(n, t) + E−
flex(n, t))⋅Cflex(n)+

(E+
ess(n, t) + E−

ess(n, t))⋅Cess+

Epv(n, t)⋅Cpv + (E+
pcc(n, t) + E−

pcc(n, t))⋅Cretail(t)
]

(3)  

where,  

● N, the number of available customers of the DVN, with n ∈ [1, N],  
● T, the DR’s total duration, with t ∈ [1, T],  
● E+

flex(n, t), E−
flex(n, t) the energy setpoints corresponding to the n-th 

customer’s upward (+) and downward (− ) flexibility at timeslot t of 
the DR,  

● E+
ess(n, t), E

−
ess(n, t) the energy setpoints for charge (+) and discharge 

(− ) of an aggregated ESS at the n-th customer’s side at timeslot t of 
the DR - variables equal to zero if the n-th customer does not own 
such assets,  

● E+
pcc(n, t), E−

pcc(n, t) the energy setpoints at the point of common 
coupling (PCC) of the n-th customer, corresponding to overall im
ported (+) and exported (− ) energy at timeslot t of the DR,  

● Epv(n, t) the energy setpoints for an aggregated PV unit installed at 
the customer’s side at timeslot t of the DR, - variable equals to zero if 
the n-th customer does not own such assets  

● Cflex(n) a virtual energy cost associated with the n-th customer’s 
reliability, which is used as an index to the sorted retail dynamic 
price. 

● Cess, Cpv the LCoE for the aggregated ESS and PV of the n-th cus
tomer’s assets, assuming typical equipment installed in residential 
households. 

For convenience, the following representations are adopted (∀ n ∈ [1, 
N]). 

Eflex(n) =
[

E
⃗

flex
+(n) E

⃗

flex
− (n)

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E+
flex(n, 1) E−

flex(n, 1)
… …

E+
flex(n, t) E−

flex(n, t)
… …

E+
flex(n,T) E−

flex(n,T)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)  

Eess(n) =
[

E
⃗

ess
+(n) E

⃗

ess
− (n)

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E+
ess(n, 1) E−

ess(n, 1)
… …

E+
ess(n, t) E−

ess(n, t)
… …

E+
ess(n, T) E−

ess(n, T)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)  

Epcc(n) =
[

E
⃗

pcc
+(n) E

⃗

pcc
− (n)

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E+
pcc(n, 1) E−

pcc(n, 1)
… …

E+
pcc(n, t) E−

pcc(n, t)
… …

E+
pcc(n, T) E−

pcc(n, T)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)  

Epv(n) ≡ Epv
⃗
(n) =

⎡

⎢
⎢
⎢
⎢
⎣

Epv(n, 1)
…

Epv(n, t)
…

Epv(n, T)

⎤

⎥
⎥
⎥
⎥
⎦

(7) 

A series of constraints are formulated in order to respect the limi
tations of each vDER and the DR’s satisfaction. 
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Constraint 1: energy balance (supply/demand) and satisfaction of 
the DR’s setpoint 

where, EL
⃗ 

is the non-flexible DVN load and EDR
⃗

, the DR’s setpoint, 
expressed in energy terms that must met at every time slot (both T-sized 
vectors). 

Constraint 2: minimum-maximum operation limits ∀ n ∈ [1, N] 

Eflex− min(n) ⊙ Oflex(n) ≤ Eflex(n) ≤ Eflex− max(n) ⊙ Oflex(n)
Eess− min(n) ⊙ Oess ≤ Eess(n) ≤ Eess− max(n) ⊙ Oess(n)
Epcc− min(n) ⊙ Opcc ≤ Epcc(n) ≤ Epcc− max(n) ⊙ Opcc(n)

0 ≤ Epv(n) ≤ Epv− mpp(n)

(9)  

where,  

● Eflex− min(n) =
[
0
⃗

E
⃗

flex− min
− (n)

]
, Eflex− max(n) =

[
E
⃗

flex− max
+(n) 0

⃗]
,  

● Eess− min(n) =
[
0
⃗

E
⃗

ess− min
− (n)

]
, Eess− max(n) =

[
E
⃗

ess− max
+(n) 0

⃗]
,  

● Epcc− min(n) =
[
0
⃗

E
⃗

pcc− min
− (n)

]
, Epcc− max(n) =

[
E
⃗

pcc− max
+(n) 0

⃗]
, 

● Epv− mpp(n) the maximum-power-point aggregated energy PV pro
duction vector of the n-th customer. 

In 9, Oflex(n),Oess(n),Opcc(n) ∈ Z2 represent the decision variables 
modeling the operation of the complementary aggregated units, which 
are defined as follows: 

Oflex(n) =
[

O
⃗

flex
+(n) O

⃗

flex
− (n)

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O+
flex(n, 1) O−

flex(n, 1)
… …

O+
flex(n, t) O−

flex(n, t)
… …

O+
flex(n, T) O−

flex(n, T)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)  

Oess(n) =
[

O
⃗

ess
+(n) O

⃗

ess
− (n)

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O+
ess(n, 1) O−

ess(n, 1)
… …

O+
ess(n, t) O−

ess(n, t)
… …

O+
ess(n, T) O−

ess(n, T)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)  

Opcc(n) =
[

O
⃗

pcc
+(n) O

⃗

pcc
− (n)

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O+
pcc(n, 1) O−

pcc(n, 1)
… …

O+
pcc(n, t) O−

pcc(n, t)
… …

O+
pcc(n, T) O−

pcc(n, T)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)  

??? (13)  

Oflex(n), Oess(n), Opcc(n) ∀ n ∈ [1, N] are bound by: 

O
⃗

flex
+(n) + O

⃗

flex
− (n) = O

⃗

ess
+(n) + O

⃗

ess
− (n) = O

⃗

pcc
+(n) + O

⃗

pcc
− (n) = 1

⃗
(14) 

Finally, a final set of constraints is needed for the case of customers 
with ESSs installed in order to bound ∀ n ∈ [1, N], t ∈ [1, T] the ESS’s 
operation to the limitations deriving from its technical characteristics, i. 
e., its capacity (C(n)), charge and discharge C-rates (R+

C , R−
C ) and Depth- 

of-Discharge (DoD): 

C(n)⋅SoCmin(n) ≤
∑t− 1

τ=1

[
E+

ess(n, τ) + E−
ess(n, τ)

]
+

E+
ess(n, t) + E−

ess(n, t)

C(n)⋅SoCmax(n) ≥
∑t− 1

τ=1

[
E+

ess(n, τ) + E−
ess(n, τ)

]
+

E+
ess(n, t) + E−

ess(n, t)

(15)  

0 ≤ E+
ess(n, t) ≤ R+

C (n)⋅C(n)⋅DoD(n)⋅rt (16a)  

0 ≥ E−
ess(n, t) ≥ R−

C (n)⋅C(n)⋅DoD(n)⋅rt (16b)  

where, rt = 60/mr and mr is the measurement sampling resolution (e.g., 1 
or 15). 

Given the different levels of abstraction introduced in this work, R+
C ,

R−
C take common values found in typical residential ESS installations, 

namely, R+
C = 0.75, R−

C = 1. Similarly, DoD = 0.8 if the usage of Li-ion 
batteries is taken into account. 

The fact that all optimisation expressions are linear and their vari
ables are either continuous, or binary, is very beneficial because LP/ 
MILP problems are solved much faster than their non-linear equivalents. 
Moreover, re-running the optimisation algorithm can be achieved 
quickly, thus, facilitating real-time applications. 

3.3. Intra-Node Matchmaking 

Mitigating failures during the active period of a DR event imposes, 
the following time-related constraints. First, as OpenADR allows for 
intervals that lie in the order of seconds, we must employ a procedure 
that, apart from accurate, is computationally lightweight. Second, there 
needs to be enough time for the agent to engage in OpenADR’s DR 
issuance protocol with the candidates that will cover the excess/ 
shortage. Given the high variability of consumption and generation 
forecasts, especially in cases of residential households, failures should be 
expected frequently. Therefore, the proposed MAS is equipped with two 
“safety valves” (matchmaking algorithms) to ensure the fulfillment of 
the optimally dispatched DR events in a timely manner, even when high 
deviations between forecasts and actual measurements are observed. 
For this reason, deterministic optimisation problems and simple clus
tering algorithms are applied. Both matchmaking components are 
optimisation problems solving two variations of the OptiDVN module. 
Their differences concern the various levels of abstraction, i.e., what is 
considered as an “asset” in each case and additional dynamic input time 
series adjustments. 

The Intra-Node Matchmaking (IntraNM) algorithm is the first “safety 
valve” in cases where one or more customers deviate from the setpoints 
output by OptiDVN, based on a tunable threshold. IntraNM reallocates 
the remainders of the setpoints of the deviating customers to unallocated 

∑N

n=1

[
⃗ E+

flex (n) + ⃗ E−
flex(n) + ⃗ E+

ess(n) + ⃗ E−
ess(n) + ⃗ E+

pcc(n) + ⃗ E−
pcc(n) + ⃗ Epv(n)

]
= ⃗ EL, ∀ n ∈ [1,N]

∑N

n=1

[
⃗ E+

pcc(n) + ⃗ E−
pcc(n)

]
= ⃗ EDR, ∀ n ∈ [1,N]

(8)   

C. Patsonakis et al.                                                                                                                                                                                                                             



Journal of Cleaner Production 314 (2021) 127844

7

customers of the DVN. This algorithm is input a time series of setpoints 
that is computed as the algebraic difference of the OptiDVN’s originally 
output setpoints minus the sum of the customer setpoints that have not 
deviated from their targets, which is necessary to respect the latter’s 
ongoing operation. To ensure fast response times and to minimize the 
number of lost timeslots, IntraNM considers only customers that are 
configured to automatically accept DR requests, i.e., without requiring 
explicit human consent. To mitigate further deviations, IntraNM adjusts 
customer time series based on actual collected reports since the begin
ning of the current day. Next, the error between the forecasted and the 
actual values is computed. Forecasted and actual values are partitioned 
into two clusters via k-means clustering. The lower value clusters isolate 
the forecasted and the actual base load respectively. Their difference 
represents the current day’s deviation from the forecasted values. The 
remaining forecasts are calibrated based on the calculated deviation. Put 
simply, the clustering of the collected measurements attempts to capture 
the customers’ behavior from the beginning of the day and modifies 
accordingly the load forecast in order to adapt to current day conditions. 
The remainder of the IntraNM algorithm is identical to OptiDVN, i.e., it 
involves the same objective function (Equation (3)) and constraints 
(Equations ((4) and (8)–(10) and (14) and (15)). 

3.4. Inter-Node Matchmaking 

In cases where the IntraNM fails to compensate for the observed 
deviations, the DVN actives its second “safety valve”, i.e., Inter-Node 
Matchmaking (InterNM). Conceptually, this algorithm attempts to 
rectify the situation by engaging with other DVNs of the MAS which, 
from the originating DVN’s point of view, are modeled as “customers”. 
In order for a DVN to be able to assess which other agents can be 
considered as candidates for selection, it requires data pertaining to 
their individual aggregated forecasted flexibility. However, communi
cating this information during the active period of a DR event would 
impose additional time constraints. We eliminate this by having the 
agent preemptively query its other fellow agents prior to the start of the 
DR event’s active period. To evaluate to which other agents DR requests 
will be dispatched, we follow a similar strategy as before. The optimi
sation problem follows the same principles as OptiDVN with the dif
ference that all variables and constraints discussed in Section 3.2 refer to 
other DVNs, as already noted. Each DVN maintains a local perception of 
the reliability of other fellow agents in the context of DR events. This 
metric is updated in a similar fashion as that of DVN customers. 
Assuming the InterNM algorithm finds a feasible solution to handle the 
excess/shortage, it dispatches the DR requests to the selected fellow 
agents. From hereon in, the selected agents follow the same flow that we 
have described up to this point. 

3.5. Agent peer-to-peer (P2P) network 

Open Automated Demand Response (OpenADR (Alliance, 2013)) is 
an open, interoperable communication standard that facilitates smart 
grid information exchange among various energy stakeholders and 
end-users. To provide for interoperability, the presented MAS architec
ture builds upon OpenADR to allow the exchange of information 
regarding a plethora of report types, forecasts, availability schedules, 
market prices, DR events and others. In addition to OpenADR’s 
expressive data model, one of its main benefits stem from its inherent 
support for hierarchical deployment architectures of arbitrary 
complexity that can be scaled in real-time. The advantages of OpenADR 
have, on the one hand, led to its adoption by relevant standardization 
bodies, e.g., the International Electrotechnical Commission (IEC) and, 
on the other hand, its embrace from both industry and research in
stitutions to provide, among others, DER management, ancillary and a 
wide variety of demand response services. 

The inherent distributed deployment of smart meters, IoT devices 
and DERs brought on by the integration of small/medium customers to 

DR programs necessitates the employment of advanced ICT to allow for, 
e.g., monitoring, control and reports. Put simply, regardless of the data 
model, a fundamental requirement of any MAS that aims for practical, 
real-world deployments, is the establishment of a distributed and scal
able communications network that can provide for service liveness, even 
in the presence of failures. Furthermore, OpenADR’s compliance rules 
impose a set of security requirements that agents of the MAS need to 
abide by. Moreover, it is necessary to acknowledge additional security 
constraints that, e.g., Aggregators and utilities are subject to, e.g., data 
privacy. 

To address these requirements, the introduced MAS, from a technical 
standpoint, employs OpenFire (Realtime, 2020) as its main communi
cation broker, which allows for both HTTP and XMPP communications 
(the latter is an OpenADR requirement). OpenFire’s built-in security 
features, e.g., support for Transport Layer Security (TLS (Dierks and 
RescorlaRFC, 2008)) and X.509 digital certificates (Housley et al., 
1999), provide the necessary security and privacy features for practical 
deployments (Gelenbe et al., 2013). To provide for scalability, decen
tralization and fault-tolerance, a cluster of OpenFire servers is deployed 
that can be, in real-time, scaled accordingly. From the viewpoint of 
participating customers, the cluster acts as a unified, virtual communi
cation broker that, transparently, load balances communications and 
message routing. 

3.6. Agent back-end 

Fig. 3 presents the physical diagram of a DVN, which is comprised 
by: 1) an HTTP server that exposes the agent’s interfaces to the P2P 
network, 2) the agent’s back-end, which “glues” together its sub- 
components and, 3) a SQL-based, relational database, which stores all 
the data that are relevant to the agent’s operation. We integrate parts (1) 
and (2) via a standard Web Server Gateway Interface (WSGI (Eby, 
2010)) approach and parts (2) and (3) by employing the SQLAlchemy 
(Bayer et al., 2012) toolkit. 

The agent’s back-end is a multi-threaded, asynchronous, event-based 
application developed in Python (Van Rossum and Drake, 2009). The 
agent encompasses timer threads that execute on predefined time in
tervals. The “Model Training” thread is responsible for training the 
agent’s machine learning models. The “Customer Clustering” thread 
updates the profiles of the agent’s customer clusters. 

The agent also encompasses threads whose execution is triggered by 
external inputs, e.g., the “Optimal Dispatch” thread is activated when 
the agent receives a DR request. Furthermore, the execution of events 
may lead to the internal scheduling of other events, which is typical in, e. 
g., the context of the IntraNM and InterNM algorithms. To reliably 
synchronize the concurrent execution of all these events, we imple
mented, from scratch, an asynchronous and persistent scheduler for 
time-based events. This scheduler is comprised by a master thread that 
assigns the handling of events to a pool of worker threads. This approach 
allows events to be executed in parallel and provides for increased 
throughput. 

Finally, a high-level description of a DVN’s decision making process 
to optimally manage an input DR request originating from, e.g., an 
aggregator, as well as, its monitoring process, which takes place during 
the event’s active period, is provided (Fig. 4). On input an OpenADR 
event, a DVN first examines whether it’s capable of servicing it or not. 
Assuming that is the case, the DVN identifies clusters of customers that 
can service the DR’s targets, based on the nature of the request and, 
subsequently, proceeds on invoking OptiDVN. If OptiDVN is able to 
provide a feasible solution, a list of OpenADR sub-DR requests is con
structed and dispatched to the selected customers. Depending on the 
nature of the DR event, the DVN may wait for explicit confirmation from 
the selected customers. Following the receipt of approvals from all 
selected customers, the DVN communicates to the aggregator its ability 
to service the input DR request. At the beginning of a DR event’s active 
period, the DVN begins to monitor both the power flow from the 
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engaged customers with the sub-DR requests, as well as the aggregated 
power flow of the entire DVN towards the Aggregator. This dual moni
toring aims towards ensuring that the expected behaviour will be 
delivered, since there is always a possibility that other customers, not 
engaged, will alter their behaviour, hence altering the aggregated power 
flow and leading to the DR failure even through the sub-DR requests are 
still on track. If a deviation in either power flows is identified, an 
ancillary process is triggered. Upon a second consecutive deviation, the 
DVN executes the matchmaking process to mitigate the issue that has 
occurred. First within the DVN with IntraNM, and then with other DVNs 
through InterNM. If a new feasible solution is identified by either 
IntraNM or InterNM, a new set of sub-DR requests is issued, whereas the 
sub-DR to the customer that did not deliver the agreed targets is 
canceled. The monitoring process, along the ancillary ones, continues 
until all DR sub-signals are completed. 

4. Experimental evaluation 

4.1. Experimental setup, test cases and evaluation metrics 

We begin this section by elaborating on the experimental setup that 
was designed and implemented to assess the proposed framework. We 
assume an Aggregator with a portfolio of 50 customers that are assigned 
across 4 DVNs. DVN_test is assigned 25 customers and DVN1, DVN2 and 
DVN3 are assigned 10, 10 and 5 customers, respectively. For cost and 
profit estimation, we employ the RTP of Stadtwerk Haßfurt GmbH, a 
notable German utility provider. 

In Table 1, the customer portfolio of DVN_test is provided. A cus
tomer’s profile consists of capacity (in kW) information regarding her 
installed assets (PVs, ESSs), an index corresponding to her reliability as 
calculated by the DVN following the customer’s participation in DR 
events. The “DR type” attribute signifies whether the customer partici
pates in explicit (“EXP” - direct control of her assets, including 
controllable loads, such as HVACs), or implicit (“IMP” - via incentives 
provided by the DR framework, which imply actions from the cus
tomer’s side whenever a DR arrives) DR events. The column “Customer 

Type” signifies whether the customer is a pure consumer (“CONS”) or a 
prosumer (“PROS”). Finally, the contracted power (in kW) is specified to 
ensure that this value is never surpassed in the context of a DR, thus, 
mitigating customer penalization. 

A total of 8 scenarios are considered, which are summarized in 
Table 2. The time horizon of all scenarios is the same (15:00–15:30, 
UTC+3) for the same day (27th of April 2020) in order to ensure that the 
consumption and generation time series are the same. DR setpoints and 
their respective measurements are dispatched and collected every 1 min. 
In order to provide a benchmark for all scenarios, a baseline case has 
been created to calculate the profits deriving from the proposed DR 
application framework. The baseline scenario is essentially a rule-based 
algorithm, which calculates setpoints by, first, dispatching power from 
prosumers (PVs are prioritized over ESSs) and, subsequently, employs 
customers in descending order of reliability until the demand is met. We 
note that this rule-based, greedy algorithm is unable to produce set
points across all examined scenarios, which showcases the limited so
lution space of such approaches compared to more sophisticated 
schemes, such as the OptiDVN presented in this work. Clearly, any 
observed deviation in such scenarios immediately leads to the overall 
failure of the DR signal. 

All scenarios (1–8) essentially progress by activating consecutively 
the components and functionalities of the proposed DR framework. Each 
of these scenarios incorporates one or more failures in order to prove the 
resilient nature of the proposed DR framework, which is considered as 
one of the key innovative contributions of this work. Scenarios 1 to 4 do 
not involve customer clustering, while scenarios 5–8 do. The clustering 
component affects the feasible solution space of the 3 optimisation en
gines and the meaning of the incoming DR signal. On the one hand, 
without clustering, all active customers of the DVN are being fed to 
OptiDVN, regardless of DR type, therefore, the incoming load dispatch 
DR signal demands the particular setpoint to be the overall constant 
power flow of the entire DVN, i.e., it is a P setpoint (in kW). In case of 
explicit load dispatch, only explicit customers can be used to satisfy the 
DR, whilst implicit customers continue their normal operation as fore
casted. This information is used by OptiDVN and IntraNM in order to 

Fig. 3. Physical (implementation) diagram of a DVN.  
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calculate an equivalent augmented EL
⃗ 

in Equation (8), which includes 
the baseline demand of both the explicit and implicit users. In case of 
implicit prosumers, their PVs are considered as negative loads and are 
algebraically added to their consumption. On the other hand, when 
customer clustering is employed, OptiDVN and IntraNM are fed only 
customers of the calculated cluster corresponding to the necessary DR 
customer type. This implies that the DR signal setpoint corresponds to a 
relative increase or decrease of the DVN’s aggregated power flow, thus, 
it is a ΔP setpoint (in kW). This differentiation of the interpretation of 
the DR signal is useful in order to extract valuable outcomes, as we 
discuss in the next paragraph. 

As seen in Table 2, the quantifiable evaluation metrics are the DR’s 
implementation costs, both expected and actual, the execution time of 
the enabled DVN components and the number of customers partici
pating in the DR. First, regarding costs, they have all been calculated for 
both the running and the baseline scenarios to produce comparable 
numerical results regarding the financial aspects of the application of a 
DR scheme from the point of view of customers. As previously noted, in 
many cases, the rule-based engine cannot produce results to service the 
requested DR and, therefore, in these cases, the base cost cannot be 
calculated. We note that negative values correspond to monetary values 
that customers would get paid, whilst positive values correspond to 
customer penalties. Second, the number of customers that service the DR 
has been selected as an evaluation metric in order to assess whether the 

proposed optimisation algorithms are greedy, meaning whether they 
have the tendency of selecting as much customers as possible. Note that, 
in general, the number of participating customers should be the mini
mum that provides a viable solution for the DR. Finally, the execution 
time of the three optimisation engines has been included as a perfor
mance indicator since, in the proposed DR framework, the time reso
lution is as low as 1-min long and, therefore, has to be computationally 
efficient to avoid introducing delays on the real-time decision-making 
and monitoring processes. To measure the execution time of the 
respective DVN algorithms, i.e., OptiDVN, IntraNM and InterNM, which 
are noted in the table as “Opt”, “iNM” and “INM”, respectively, and be 
able to compare them, the experiments were executed on the same 
computer, which is equipped with 12 GB RAM, an Intel core i7 (2.3 GHz) 
and a SSD hard-drive. We do not include metrics regarding the execution 
time of the clustering algorithm as its invocation is not in conflict with 
the aforementioned algorithms. 

4.2. Experimental results 

Table 2 also provides the results of the 8 validation scenarios. To 
facilitate the reader’s comprehension of the examined scenarios and in 
the interest of space, we elaborate, in detail, for two scenarios. In both 
cases, the DR specifies a single setpoint in kW, which must be constantly 
maintained by the DVN (either as a P or ΔP setpoint) for the DR’s entire 

Fig. 4. High-level diagrams depicting a DVN’s decision making flow on input a DR event originating from, e.g., an aggregator (left), and its monitoring process, 
which takes place during the active period of a DR event (right). 
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duration. Failures are presented according to the customer (C-id) that 
failed to maintain the requested setpoint at a specific timestamp (T). 
Each failure is associated with the DVN’s mitigation actions. 

4.2.1. Scenario 3: OptiDVN → IntraNM → InterNM → IntraNM 
As our first reference scenario, we chose “Scenario 3” (Fig. 5) 

because it demonstrates the increased level of reliability of the proposed 
DR framework stemming from its multiple safety valves. The input DR 
event requests a setpoint of − 20kW between 15:00–15:30. OptiDVN 
selected five customers to service it, i.e., C-id007, C-id008, C-id013, C- 
id014, C-id017 and C-id020. 

C-id020 fails at 15:11, thus, triggering IntraNM which, however, fails 
to provide a feasible solution. Consequently, InterNM is triggered, which 
succeeds and delegates part of the DR to DVN1 and DVN2. We note that, 
since DVN1 and DVN2 are now engaged in a DR, they cannot participate 

in another DR for the same time period. Therefore, if InterNM is trig
gered again for some reason, only DVN3 will be considered as a candi
date. As illustrated by the power flows depicted in Fig. 5, the event in 
DVN_test does not fail, as only one time slot has not been met, thus, 
monitoring progresses as expected. At 15:20, C-id017, who is allocated a 
“small” part of the DR compared to other customers, fails. This failure 
triggers IntraNM again, which is now able to provide an optimal solution 
to compensate. Individual customer power flows are illustrated in Fig. 5, 
which depicts in bold lines the failures of customers C-id020 and C- 
id017 (marked in red in the legend). Customers marked with green in 
the legend show the ones selected for compensating the failures of the 
two aforementioned customers. At the end of the DR interval, DVN_test 
is able to complete the DR with the assistance of DVN1 and DVN2. 

4.2.2. Scenario 8: OptiDVN → IntraNM → InterNM featuring customer 
clustering 

As our second reference scenario, we chose “Scenario 8” (Fig. 6), 
which is similar to “Scenario 3”, the only difference being that customer 
clustering is now involved, which is executed at the beginning of each 
calendar day. The setpoint here corresponds to a relative increase of the 
DVN’s power flow ΔP by 2 kW from 15:00 to 15:30. OptiDVN selects C- 
id022, C-id015, C-id020, C-id017, C-id008 and C-id014 to service it. At 
15:02, C-id014 fails and IntraNM is triggered, who’s optimal solution is 
the selection of C-id013 to compensate for the deviation. Thanks to the 
fast execution time of both IntraNM and the DVN’s monitoring, only one 
DR interval is lost, with the DR resuming normal operation at 15:03, as 
illustrated in Fig. 6. Next, C-id018 fails at 15:08. IntraNM is triggered 
again, however, due to the limited portfolio provided by the customer 
clustering component, no solution is feasible. Therefore, InterNM is 
invoked and DVN1 and DVN2 are selected to compensate for the 
incurred deviation. Finally, C-id017 fails at 15:18 triggering IntraNM 
which again, however, is unable to provide for a feasible solution. As a 
result, InterNM is invoked, with only DVN3 available for compensating 
the customer failure, which is indeed selected and, ultimately, leads to 
the successful completion of the original DR event. 

4.2.3. Experimental outcomes, discussion and limitations 
From the 8 scenarios examined, quite interesting and valuable out

comes can be derived. Starting with the straightforward comparison 
between the optimisation engines and the rule-based decision making, it 
is evident that the former present consistently at least 3 orders of 
magnitude larger profit margins and faster execution times. In fact, these 

Table 1 
DVN_test customer portfolio overview.  

ID PV 
[kW] 

ESS 
[kW] 

Reliability DR 
Type 

Customer 
Type 

Contract 
[kW] 

001 0 0 0.979 EXP CONS 8 
002 0 0 0.726 EXP CONS 8 
003 0 0 0.869 IMP CONS 8 
004 0 0 0.890 EXP CONS 8 
005 0 0 0.694 EXP CONS 8 
006 0 0 0.631 EXP CONS 8 
007 0 0 0.793 EXP PROS 8 
008 8 5 0.975 EXP PROS 21 
009 0 0 0.884 IMP CONS 8 
010 0 0 0.966 IMP CONS 8 
011 0 0 0.947 IMP CONS 8 
012 0 0 0.869 IMP CONS 8 
013 10 2.5 0.798 EXP PROS 21 
014 8 0 0.965 EXP PROS 8 
015 0 0 0.948 EXP CONS 8 
016 0 0 0.678 EXP CONS 8 
017 0 5 0.793 EXP PROS 21 
018 0 0 0.788 IMP CONS 8 
019 0 0 0.814 EXP CONS 8 
020 10 0 0.883 EXP PROS 21 
021 0 0 0.944 IMP CONS 8 
022 0 0 0.841 EXP CONS 8 
023 0 0 0.711 IMP CONS 8 
024 0 0 0.849 IMP CONS 8 
025 0 0 0.854 EXP CONS 8  

Table 2 
Overview of the proposed DR framework’s evaluation scenarios.  

ID DVN Modules DR Failure Action No of Outcome Base Exp. Opt Achieved Execution 

Opt iNM I-NM C [kW] C-id T Pax Cost Cost [\euro ] Cost [\euro ] Time (sec) 

1 ✓ – – – − 1 – – – 3 Completed − 0.1232 − 8.67994 − 8.67994 Opt 2.571 
2 ✓ ✓ –  6 017 15:11 iNM 13 Completed None 3.87007 3.11885 Opt iNM 2.374 

1.132 
3 ✓ ✓ –  − 20 020 15:11 iNM 

I-NM 
6 Completed None − 40.1264 − 35.47882 Opt 

iNM 
I-NM 

2.395 
2.095 
1.508       

017 15:20 iNM      iNM 2.004 
4 ✓ ✓ ✓ – 6 020 15:02 iNM 13 Completed None 3.87007 3.01488 Opt 

iNM 
2.683 
1.109       

017 15:04 iNM      iNM 0.597 
5 ✓ – – ✓ − 1 – – – 2 Completed − 0.1232 − 2.73694 − 2.74607 Opt 1.927 
6 ✓ ✓ – ✓ − 5 013 15:11 iNM 3 Completed − 0.2374 − 9.4956 − 9.86199 iNM 1.115 
7 ✓ ✓ ✓ ✓ − 5 014 15:02 iNM 3 Completed − 0.2374 − 9.4956 − 10.38941 Opt 

iNM 
1.187 
1.088       

008 15:06 iNM      iNM 0.752 
8 ✓ ✓ ✓ ✓ 2 014 15:02 iNM 6 Completed − 0.0375 − 3.63442 − 2.88741 Opt 

iNM 
1.799 
0.530       

008 15:08 iNM 
I-NM      

iNM 
I-NM 

No sol 
1.159       

017 15:18 iNM 
I-NM      

iNM 
I-NM 

No sol 
0.994  
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algorithms (OptiDVN, IntraNM, and InterNM) are so fast (sub-second up 
to few seconds) that they can be considered most pertinent for such 
MAS-oriented resilient applications, especially when scaling up to 
hundreds, or even thousands of customers. Furthermore, it is also easily 
observed that the rule-based approach fails frequently to produce a so
lution, as its solution space is extremely limited compared to the algo
rithms proposed in this work. This point is of extreme relevance to, e.g., 
Aggregators, who can reap significant benefits from the expanded so
lution space of the proposed algorithms which, in turn, allows trading 
reliably increased amounts of flexibility in energy markets. 

From another perspective, the proposed optimisation engine can be 
said to introduce a more fair and balanced utilisation of customer assets, 
compared to greedy algorithms. Indeed, by limiting the number of 
customers to an optimally selected subset that can deliver the requested 
amount of power, the number of engaged customers is limited. In 
addition, through the various constraints and restrictions introduced per 
type of asset (e.g., PV, ESS), their inclusion also remains within some 
reasonable bounds. 

Combining customer clustering with the optimisation engine, con
veys even clearer the meaning of the statement above. Nevertheless, 

even though this combination provides for faster customer selection 
latency, we observe cases where the optimisation engine is unable to 
provide a feasible solution. This may be due to the fact that both flexi
bility estimation and clustering introduce certain errors that marginally 
may not allow for a feasible solution to be found. Such issues could 
perhaps be resolved if clusters are recomputed prior to the execution of 
OptiDVN. Nevertheless, we conclude that clustering the customer 
portfolio is appropriate for larger DVNs (or equivalently VPPs), 
compared to smaller entities, such as the DVNs used in the scenarios 
evaluated. 

Overall, the proposed MAS offers re-configurable DR application 
despite of failures that may happen within the DR’s active period. Based 
on our experimentation, it is evident that InterNM servers as a “last- 
resort solution”, i.e., it manages to compensate even extreme deviations. 
This implies that we are not going to be led necessarily to reduced DR 
application costs as shown in Table 2, where InterNM operation may 
affect differently the actually achieved DR application cost (e.g., Sce
nario 5 versus 8). The optimally reduced DR applications costs are a 
result of the first two optimisation engines, i.e., OptiDVN and IntraNM. 

As a general remark, it has been proven through well-designed and 

Fig. 5. Scenario 3: Power flow graph of customers servicing a load dispatch signal. Gray areas indicate customer failures.  

Fig. 6. Scenario 8: Gray areas indicate the time of C-id failure. C-id014 fails at 15:02, C-id008 fails at 15:08 and C-id017 fails at 15:18.  
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deployed case studies that through the additional two countermeasures 
(IntraNM and InterNM), it is not only possible to complete an otherwise 
failed DR, but, under circumstances, it is even possible to increase sav
ings for customers participating in the DR. This is quite an important feat 
given the importance of customer activity, awareness, and responsive
ness to DR requests. By providing for more merits during a critical sit
uation, that could lead to serious losses (both technical and financial), it 
can be expected that quite high delivery rates can be achieved. Such 
aspects become more and more important when scalability is consid
ered. Hence, it is not only possible to cost-efficiently distribute large 
portfolios through the proposed virtual agents that automatically 
resolve critical instances, but also to deliver further added-value func
tionalities that increase customer awareness, responsiveness and overall 
participation in DR programs. 

Finally, given the fact that the proposed MAS-based framework was 
tested with a relative small portfolio on 50 customers, in order to prove 
further the scalability of the proposed methodology, the authors are 
currently working on validating the framework’s functionalities on a 
bigger dataset of 300 customers, which will be a mixture of residential, 
commercial and industrial sites. 

5. Conclusions 

Modern energy markets have started to change into more dynamic 
and distributed schemes, introducing a variety of advantages, opportu
nities and challenges. Demand response has proven to play a key role for 
unlocking the true potential of flexibility offered within these markets, 
not only for large, but also for small and medium customers. In parallel, 
given the urgency of increasing significantly the RES penetration in the 
upcoming years, the need for unlocking the true potential of flexibility 
offered by all consuming entities and ensuring its reliable delivery when 
requested is becoming more and more pertinent. Most of related 
research focuses mainly on decision making optimisation, without 
addressing the hidden potential of small and medium customers, 
generally assuming that DRs will be completed or penalised in case of 
failure, or very rarely adopting adaptive methodologies that learn from 
failures and present future improvements. 

Focusing on resolving DR failure in real-time operation, a novel 
dynamic multi-agent system has been presented, following the VPP 
paradigm with virtual nodes of customers. Each node leverages state-of- 
the-art clustering and optimisation techniques and a two step method
ology for mitigating a potential DR failure, first, internally (IntraNM) 
and, then, in-between nodes (InterNM). 

The work presented has shown that the designed MAS framework 
offers a valuable fail-safe mechanism that can ensure the completion of a 
DR request, even under very challenging circumstances. This is quite an 
important achievement, given the volatile and intermittent nature of 
both RESs and end-user behavior. Furthermore, interestingly enough, 
there are also cases where additional profits can be achieved during the 
DR for involved customers (up to 3 orders of magnitude higher), pre
senting quite an interesting engagement strategy towards a more flexible 
and reliable portfolio. 

By successfully servicing otherwise destined to fail DR requests, the 
proposed architecture can be considered a “must-have” asset for key 
energy stakeholders, such as Aggregators, DSOs and TSOs. This is of 
utmost technical importance, considering the necessity that initially 
gives birth to such requests. Finally, for Aggregators, as well as, other 
market players, this could prove to be of significant financial added- 
value, since flexibility bids (translated partially or completely to DR 
requests to customers) to markets are ensured to succeed, thus, facili
tating ease of participation and the establishment of a stable revenue 
stream. 

Although the presented work successfully provided a proof of 
concept, it does not come without limitations. One of the core challenges 
that need to be further explored is the customers’ dataset. In order to 
assess scalability, as well as, real-life potential, a more diverse and large 

dataset should be introduced. The need to cover both residential, ter
tiary and other commercial customers (either prosumers or consumers) 
is evident, while the inclusion of ancillary assets (e.g., ESS banks) spe
cifically for DR services, should also be introduced to the examined 
portfolio. Finally, the accuracy of the forecasting engine used in the 
experiments, as well as, the stochastic behaviour of end-customers, have 
not been thoroughly examined. These challenges warrant further 
investigation that are part of ongoing research activities. 
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