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Abstract: The increasingly witnessed integration of information technology with operational tech-
nology leads to the formation of Cyber-Physical Systems (CPSs) that intertwine physical and cyber
components and connect to each other to form systems-of-systems. This interconnection enables
the offering of functionality beyond the combined offering of each individual component, but at
the same time increases the cyber risk of the overall system, as such risk propagates between and
aggregates at component systems. The complexity of the resulting systems-of-systems in many
cases leads to difficulty in analyzing cyber risk. Additionally, the selection of cybersecurity controls
that will effectively and efficiently treat the cyber risk is commonly performed manually, or at best
with limited automated decision support. In this work, we propose a method for analyzing risk
propagation and aggregation in complex CPSs utilizing the results of risk assessments of their in-
dividual constituents. Additionally, we propose a method employing evolutionary programming
for automating the selection of an optimal set of cybersecurity controls out of a list of available
controls, that will minimize the residual risk and the cost associated with the implementation of these
measures. We illustrate the workings of the proposed methods by applying them to the navigational
systems of two variants of the Cyber-Enabled Ship (C-ES), namely the autonomous ship and the
remotely controlled ship. The results are sets of cybersecurity controls applied to those components
of the overall system that have been identified in previous studies as the most vulnerable ones; such
controls minimize the residual risk, while also minimizing the cost of implementation.

Keywords: cybersecurity; cyber physical systems; cyber risk propagation; cybersecurity controls;
autonomous vessels

1. Introduction

Cyber-Physical Systems (CPSs) are characterized by the strong coupling of the physical
and the cyber worlds. The inevitable dependence on highly automated procedures and
the increasing integration of physical parts to highly interconnected cyber parts render CPSs
vulnerable to cyber attacks. On the other hand, the wide use of such systems in various
critical domains [1] (e.g., Smart Grid, Intelligent Transportation Systems, Medical devices,
Industrial Control Systems, etc.) increases the impact of such cyber attacks. Furthermore,
the System of Systems (SoS) nature of interconnected, complex CPSs [2] introduces challenges
in addressing security risks. In this context, a complex CPS comprises other CPSs that
are interconnected, and control and information flows exist among them. These flows
constitute pathways that a cyber attack may leverage to propagate from component to
component. More specifically, both or either of the likelihood of the attack and its impact, if
successful, may propagate. Because likelihood and impact are the constituents of risk, the
cyber risk of the overall system is related to the individual cyber risk of each interconnected
component. This in principle means that knowledge of the cyber risk of the individual
components of a complex CPS may be leveraged to assess the cyber risk of the overall
system, thus also facilitating the analysis of large scale, complex CPSs through a divide-
and-conquer-like approach to cyber risk assessment.
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The assessment of risk is one of the steps in the risk management process [3] that
concludes with treating the risk by means of controls that aim at achieving retention,
reduction, transfer, or avoidance of the risk [4]. In the general case, each risk can be treated
by a number of possible cybersecurity controls, each of which with varying effectiveness
and efficiency characteristics. Note that the same control may be effective and efficient in
treating more than one risk. Therefore, an important task in formulating the risk treatment
plan is the selection of the optimal set of cybersecurity controls, the criterion of optimality
in this context being effectiveness and efficiency. Because of the complexity of formulating
this as a formal optimization problem, particularly when there are more than one criteria
of optimality, the selection of the cybersecurity controls is largely performed empirically, at
best with some automated decision support.

In this paper, we propose a novel method for identifying a set of effective and efficient
cybersecurity controls for large scale, complex CPSs comprising other CPSs as components.
We also propose a method for assessing the aggregated risk that results by taking into
account the risk of the individual components and the information and control flows
among these components. Specifically, we leverage evolutionary computing to develop a
cybersecurity control selection algorithm that uses the aggregated cyber risk of a complex
CPS to generate a set of effective and efficient cybersecurity controls to reduce this risk.
The algorithm selects the cybersecurity controls among the list of such controls in the
NIST Guidelines for Industrial Control Systems Security [5]. We illustrate the workings of
the proposed method by applying it to the navigational systems of two instances of the
Cyber-Enabled Ship (C-ES), i.e., vessels with enhanced monitoring, communication, and
connection capabilities that include remotely controlled and fully autonomous ships [6].
The C-ES comprises a variety of interconnected and interdependent CPSs [7], and, as such,
it constitutes a complex CPS. Specifically, we derive the set of cybersecurity controls for
both the autonomous and the remotely controlled vessel.

Thus, the contribution of this work is as follows:

• A novel method for assessing the aggregate cybersecurity risk of a large scale, complex
CPS comprising components connected via links that implement both information
and control flows, by using risk measures of its individual components and the
information and control flows among these components.

• A novel method for selecting a set of effective and efficient cybersecurity controls
among those in an established knowledge base, that reduce the residual risk, while at
the same time minimizing the cost.

• Sets of cybersecurity controls for the navigational systems of two instances of the C-ES,
namely the remotely controlled ship and the autonomous ship, derived by employing
the two methods.

The remainder of this paper is structured as follows: Section 2 reviews the related
work in the areas of cyber risk propagation and aggregation; optimal selection of cybersecu-
rity controls; and C-ES risk management. Section 3 provides the background knowledge on
genetic algorithms, and on the STRIDE (Spoofing, Tampering, Repudiation, Information
disclosure, Denial of Service, and Elevation) and DREAD (Damage, Reproducibility,
Exploitability, Affected, and Discoverability) risk assessment methods that is necessary
to make the paper self-sustained. Sections 4 and 5 present the proposed method for
risk aggregation in complex CPSs and the proposed method for optimal cybersecurity
control selection, respectively. In Section 6, we apply the proposed methods to the re-
motely controlled and the autonomous ship cases and discuss the results. Finally, Section 7
summarizes our conclusions and outlines topics for future research work.

2. Related Work

Cyber risk is evaluated as a function of the likelihood of an adverse event, such as an
attack, occurring; and of the impact that will result when the event occurs. In order for
an adverse event to occur, a threat has to successfully exploit one or more vulnerabilities;
this can be done by launching one of a number of possible attacks. Hence, the likelihood
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of the event occurring is, in turn, determined by the likelihood of the threat successfully
exploiting at least one vulnerability. Accordingly, in order to analyze how the cyber risk
propagates in a complex system made up by interconnected components that are systems
by themselves requires analyzing how both the likelihood of the event and its impact
propagates. Once this analysis is accomplished, the aggregate cyber risk of the complex
system can be assessed.

Several security risk assessment methods applicable to general purpose IT systems
have appeared in the literature (see Reference [8] for a comprehensive survey). Even though
several of these methods can be and have been applied to CPSs, they cannot accurately
assess cyber risks related to CPSs according to Reference [9], where a number of approaches
for risk assessment for CPSs are listed. A review of risk assessment methods for CPSs,
from the perspective of safety, security, and their integration, including a proposal for some
classification criteria was made in Reference [10]. A survey of IoT-enabled cyberattacks
that includes a part focused on CPS-based environments can be found in Reference [11].
Cyber risk assessment methods for CPSs more often than not are domain specific, as they
need to take into account safety as an impact factor additional to the “traditional” impact
factors of confidentiality, integrity, and availability. For example, an overview of such
methods specific to the smart grid case is provided in Reference [12]. A review of the
traditional cybersecurity risk assessment methods that have been used in the maritime
domain, is provided in Reference [13]. Additionally, various risk assessment methods have
been proposed to analyze cyber risk in autonomous vessels [14–16].

Several works in the literature have studied how individual elements of cyber risk
propagate in a network of interconnected systems; both deterministic and stochastic ap-
proaches have been used to this end. A threat likelihood propagation model for information
systems based on the Markov process was proposed in Reference [17]. An approach for de-
termining the propagation of the design faults of an information system by means of a prob-
abilistic method was proposed in Reference [18]. A security risk analysis model (SRAM)
that allows the analysis of the propagation of vulnerabilities in information systems, based
on a Bayesian network, was proposed in Reference [19]. Methods for evaluating the prop-
agation of the impact of cyber attacks in CPSs have been proposed in Reference [20–22],
among others. Epidemic models were initially used to study malware propagation in infor-
mation systems [17]. The propagation of cybersecurity incidents in a CPS is viewed as an
epidemic outbreak in Reference [23] and is analyzed using percolation theory. The method
was shown to be applicable for studying malware infection incidents, but it is questionable
whether the epidemic outbreak model fits other types of incidents. Percolation theory was
also used in Reference [24] to analyze the propagation of node failures in a network of
CPSs comprising cyber and physical nodes organized in two distinct layers, such as in the
case of the power grid. The Susceptible–Exposed–Infected–Recovered (SEIR) infectious
disease model was used in Reference [25] to study malware infection propagation in the
smart grid. A quantitative risk assessment model that provides asset-wise and overall
risks for a given CPS and also considers risk propagation among dependent nodes was
proposed in Reference [26].

A method for assessing the aggregate risk of a set of interdependent critical infras-
tructures was proposed in References [27,28]. The method provides an aggregate cyber
risk value at the infrastructure level, rather than a detailed cyber risk assessment at the
system/component level. Thus, it is suitable for evaluating the criticality of infrastructure
sectors, but not for designing cybersecurity architectures or for selecting appropriate cyber-
security controls. A similar approach for the Energy Internet [29] was followed to develop
an information security risk algorithm based on dynamic risk propagation in Reference [30].
A framework for modeling and evaluating the aggregate risk of user activity patterns in
social networks was proposed in Reference [31]. A two-level hierarchical model was used
in Reference [32] to represent the structure of essential services in the national cyberspace,
and to evaluate the national level (aggregate) risk assessment by taking into account cyber
threats and vulnerabilities identified at the lower level.
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Based on the above discussion, it is evident that the problem of risk propagation and
risk aggregation for complex systems, on one hand, and the problem of optimal selection
of cybersecurity controls, on the other, have been individually studied. The conjunct
problem of identifying the optimal set of cybersecurity controls that reduces the aggregate
risk in a complex CPS cannot be approached by sequential application of methods each
of which addresses the problem’s components, due to the inherent nonlinearity of the
risk propagation, risk aggregation, and control selection processes on one hand, and the
intertwining of these processes. To the best of our knowledge, no method that solves this
conjunct problem is currently available.

On the other hand, the systematic selection of cybersecurity controls has been mostly
examined in the literature in attempting to identify the optimal set of controls for IT systems
within a specified budget; examples of such approaches are those in References [33–35].
The outline of a programming tool that supports the selection of countermeasures to secure
an infrastructure represented as a hierarchy of components was provided in Reference [36].
A methodology based on an attack surface model to identify the countermeasures against
multiple cyberattacks that optimize the Return On Response Investment (RORI) measure is
proposed in Reference [37]. However, to the best of our knowledge, a method that selects a
set of cybersecurity controls that simultaneously optimizes both effectiveness and efficiency,
by minimizing the residual risk and the cost of implementation, is still to be proposed.

The work described in this paper addresses these research gaps.

3. Background
3.1. Evolutionary/Genetic Algorithms

Genetic algorithms (GAs) are randomized search algorithms that imitate the structures
of natural genetics and the mechanisms of natural selection [38]. They imitate biological
genomes by means of strings structures that represent individuals and are composed of
characters belonging to a sepcified alphabet. These structures form populations that evolve
in time by means of a randomized exchange scheme that implements the principle of
survival of the fittest; in every new generation, a new set of individuals is created, using
parts of the fittest members of the old set, whilst also possibly retaining some of the fittest
members of the old generation. GAs can be very useful when it comes to problems with
very large solution spaces, where it is infeasible to exhaustively search the solution space.
It should, however, be noted that GAs are not guaranteed to find the global optimum
solution to a problem; however, they do find “acceptably good” solutions.

For designing a GA, a coding scheme that codes the parameter space; a set of operators
to be used to each generation to generate the next generation; and a fitness function that
measures the fitness of each individual as a functional of the function that we are trying
to optimize need to be defined. The coding scheme and the fitness function to be used
depend on the characteristics of the optimization problem on which the GA will be applied.
However, a commonly used coding scheme is to use the binary alphabet to represent each
element (gene) in a string (genome). On the other hand, the most commonly used operators
are the reproduction operator, the crossover operator, and the mutation operator. These have
been found to be both computationally simple and effective in a number of optimization
problems [39].

The operators are used to evolve populations by creating new individuals that will
form the new generation. To this end, the reproduction operator tentatively selects indi-
viduals with high fitness function values as candidate parents for the next generation, by
means of a randomized technique, such as a roulette wheel selection scheme. The selected
parents may mate by means of the crossover operator, that randomly selects pairs of mates
and creates new individuals, by combining elements of both parents, these elements being
selected at random. As in biological populations, random genetic alterations (mutations)
sometimes result in genetically fitter individuals. Such alterations, that happen with small
probability, are implemented in GAs by means of the mutation operator.
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The generic GA addresses unconstrained optimization problems. However, con-
strained optimization problems are encountered more often than not, including the prob-
lem addressed in this work, as will be seen in the sequel. Constraints can be modeled as
either equality relations, that can be incorporated within the function to be optimized; or
as inequality relations, that may be handled either by simply evaluating the fitness of each
individual and then check to see whether any constraints are violated, or by employing a
penalty method. In the former (reactive) strategy, if an individual violates a constraint, it is
assigned a fitness value equal to zero. In the latter (proactive) strategy, the fitness of an
individual that violates a constraint is decreased by an amount proportional to the cost of
the violation.

3.2. STRIDE

STRIDE [40] is a cyber security threat modeling method that was developed at Mi-
crosoft in 1999. It facilitates the process of identifying and analyzing six types of threats,
namely Spoofing, Tampering, Repudiation, Information disclosure, Denial of Service,
and Elevation of privileges, in which the initials form the acronym STRIDE. Each of these
threats corresponds to the violation of a desirable property (security objective) of the system
under study, as follows:

• Spoofing corresponds to violation of authenticity;
• Tampering corresponds to violation of integrity;
• Repudiation corresponds to violation of non-repudiability;
• Information disclosure corresponds to violation of confidentiality;
• Denial of service corresponds to violation of availability; and
• Elevation of privileges corresponds to violation of authorization.

STRIDE can be used to analyze threats for systems being in a variety of development
phases, even for systems at the design phase; thus, it enables adherence to security-by-
design principles [41]. Furthermore, even though originally designed for software systems,
STRIDE has been also used in ecosystem environments where CPSs are prominently
present [42–44]. In particular, a modified version of STRIDE was proposed and used
in Reference [6] to model threats, to develop cyber attack scenarios, and to qualitatively
assess the accordant risks for a number of CPSs in the C-ES ecosystem.

3.3. DREAD

DREAD is a security risk assessment model that, like STRIDE, was developed as
part of Microsoft’s threat modeling and risk analysis process. The name is an acronym
made up from the initials of the characteristics of the risk associated with each attack
scenario being analyzed, namely Damage (what is the extent of the damage that the attack
is expected to inflict on the system); Reproducibility (how easy it is to reproduce the
attack); Exploitability (the extent of the resources that the adversary needs to launch the
attack); Affected users/systems (how many people and/or systems will be affected); and
Discoverability (how easy is it for the adversary to identify vulnerabilities to exploit for
launching the attack) [45].

STRIDE and DREAD are interrelated: the former allows the qualitative security analy-
sis of the system, whilst the latter quantifies the identified risks. According to the approach
in Reference [22], the values (High, Medium, Low) of the DREAD variables associated
with each STRIDE threat t ∈ {S, T, R, I, D, E} are determined by applying a specific set of
criteria, shown in Table 1; these have been adapted from those in Reference [45], so as to
include CPS aspects, and are further analyzed in Reference [22].
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Table 1. Criteria for determining the values of the DREAD (Damage, Reproducibility, Exploitability,
Affected, and Discoverability) variables [22,44].

High (3) Medium (2) Low (1)

D

The adversary is able to
bypass security

mechanisms; get
administrator access;

upload/modify the CPS
content.

Leakage of confidential
information of the CPSs
(functions/source code);

partial
malfunction/disruption of

the system.

Leakage of non-sensitive
information; the attack is
not possible to extend to

other CPSs on-board.

R The attack can be
reproduced at anytime.

The adversary is able to
reproduce the attack, but

under specific risk
conditions.

Although the attacker
knows the CPS’s

vulnerabilities/faults, they
are unable to launch the

attack.

E
The attack can be

performed by a novice
adversary, in a short time.

A skilled adversary may
launch the attack.

The attack requires an
extremely skilled person

and in-depth knowledge of
the targeted CPS.

A All CPSs are affected.
Some users/systems, with

non-default configuration are
affected.

The attack affects only the
targeted CPS.

D

The CPS’s vulnerabilities
are well known, and the
attacker is able to access

the relevant information to
exploit them.

The CPS’s
vulnerabilities/faults are not

well known and the
adversary needs to access the

CPS.

The threat has been
identified, and the

vulnerabilities have been
patched.

Then, the risk value Rs
t associated with each STRIDE threat t ∈ {S, T, R, I, D, E} for

system s is calculated by using the following formulas [41,44,45]:

Impacts
t =

Damage + A f f ectedsystems
2

, (1)

Likelihoods
t =

Reproducibility + Exploitability + Discoverability)
3

, (2)

Risks
t =

(Impacts
t + Likelihoods

t)

2
. (3)

Impacts
t represents a measure of the effect a successful attack materializing threat t

has on the component s; Likelihoods
t represents a measure of how likely it is for threat t to

materialize on s.
Both STRIDE and DREAD have been used in Reference [44] to assess the cyber risk of

Cyber-Physical Systems (CPSs) on board the C-ES paradigm.

4. Cyber Risk Propagation and Aggregation
4.1. System Model

Assume a CPS consisting of N interconnected components, each denoted by ci, i =
1, ...N. This system can be represented by a directed graph of N + 1 nodes, the system itself
being one of the nodes, denoted as c0. The edges of the graph represent information and
control flows between the nodes. An edge from node A to node B indicates the existence of
either an information flow or a control flow, from A to B. A consequence of the existence of
such an edge is that a cybersecurity event at node A affects node B, as well. For example,
in the simple graph of Figure 1, a cybersecurity event at node A will have effect on node
B, as well, while a cybersecurity event at node B will have effect on both nodes A and C.
The relationship "has effect" can be quantified by assigning an effect coefficient to each flow.
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These are denoted henceforth by e f f a
AB, where a = I for the information flow, and a = C

for the control flow, respectively. One way of assigning values to these coefficients is to
use the inverse of the in degree centrality, i.e., the number of flows arriving to that node,
denoted by IDC. Following this approach, the case in which information arrives to node B
only through node A, will result in a much higher e f f I

AB than the case where information
arrives to node B from a large number of nodes, including A. By definition, the values of
all effect coefficients lie in the [0, 1] range and provide an indication of the percentage of
the damage that is propagated from one node to the other. The total effect coefficient e f f T

AB is
computed as a function of e f f I

AB and e f f C
AB, as in Equation (4).

The function f in Equation (4) has to be instantiated according to the requirements
of the domain to which the methodology is applied and/or to specific characteristics
of components A and B with regards to the criticality of information and control flows
between them. For example, one option is to select f as the average of the effect coefficients.
This option reflects equal importance of the information and the control flows in risk
propagation, and it has been used in the illustrative application of the method presented in
Section 6.

e f f T
AB = f (e f f I

AB, e f f C
AB), (4)

where e f f I
AB = 1

IDCI
B

, e f f C
AB = 1

IDCC
B

.

Figure 1. Effect relationship between nodes.

Another example is that of a cyber-physical system that mainly aims at sensing and
processing data coming from a process, e.g., an electric power smart meter. In such systems,
information workflows are more significant than control flows, and a function f of the
form e f f T

AB = a× e f f I
AB + b× e f f C

AB with a + b = 1, a > b would be a good choice. On
the other hand, for a cyber-physical system that aims at controlling a process, e.g., a smart
grid digital switch, a variant of the same function f but with a + b = 1, b > a would
be more appropriate, as control flows are more likely to enable cyber risk propagation
between components.

4.2. Aggregate Risk

For any threat t, the aggregate risk R
aggcj
t of component cj is (applying the worst case

scenario principle [28]) given by:

R
aggcj
t = max(R

dircj
t , R

propcj
t ), (5)

where R
dircj
t (direct risk) is the risk when cj is not connected to any other component

ck, k 6= j, which is calculated by means of Equations (1)–(3), and R
propcj
t (propagated risk) is

the risk that cj faces because of its connections to other components. These connections
may be over any, possibly multi-hop, path pl from any node k to j, k 6= j. Applying again

the worst case scenario principle, R
propcj
t is calculated as:

R
propcj
t = max

pl
R

prop
pl
cj

t , (6)
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where R
prop

pl
cj

t is the risk of component cj associated with threat t and propagated along
path pl .

When a threat materializes against component ci, it will also create an effect to com-
ponent cj, if ci and cj are connected. In the absence of controls, the likelihood that this
will happen is equal to the likelihood that the threat will materialize against ci in the first
place. In contrast, the impact that this event has on cj is only a fraction of the impact the
event has on any ck on any path pl from ci to cj. This fraction is represented by e f f T

pl
and is

calculated by

e f f T
pl
=

j−1

∏
i=1

e f f T
cici+1

. (7)

Accordingly, the risk propagated over path pl , originating at component (node) ci and
terminating at component (node) cj, is calculated by:

R
prop

pl
cj

t =
e f f

Tpl
cicj × Impactci

t + Lci
t

2
. (8)

The system as a whole is represented by c0; therefore, the (global) risk of threat t for
the system is given by:

Rs
t = R

aggc0
t = max(R

dirc0
t , R

propc0
t ), (9)

where the direct risk for the system is not applicable (R
dirc0
t = 0) and the propagated risk

for the system is calculated as for any other node (R
propc0
t = maxpl R

prop
pl
c0

t ), thus

Rs
t = max

pl
R

prop
pl
c0

t (10)

In order to showcase how the global risk calculation works and also to shed light on an
underlying subtle assumption, consider the example system shown in Figure 2. In order to
calculate the aggregate risk of each ci, i = 1, 2, 3, we need to calculate the propagated risks,
and this requires identifying all possible paths originating at any node and terminating
at ci, i = 1, 2, 3, respectively. The propagated risk for c3 is equal to zero, as there is no
such path. Nodes c1 and c2 are interconnected; therefore, a loop exists between them.
Consequently, if we allow circular paths to be considered, there are infinite paths between
these two nodes, and the computation in Equation (7) would be endless. However, by
noticing that the value of the total effect coefficient becomes, by definition, negligible after
a couple of hops, we are able to disregard circular paths in its computation.

Figure 2. An example of a system.
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Therefore, the global risk of a system can be calculated by the algorithm in Algorithm 1.
As can be seen in Algorithm 1, nodes along a path are processed recursively, starting at
the end of the path. If a node is already in the path, it is not included again, so as to avoid
cyclic paths.

Algorithm 1: Global system risk calculation algorithm.
Result: Global system risk is calculated as Rs

t
Function process_node(cj, e f f , pl):

L = L
cj
t ;

I = I
cj
t ;

R = L+I
2 ;

foreach edge from ci to cj do
if ci 6∈ pl then

pl = pl ∪ {ci};
L′, I′ = process_node(ci, e f fcicj , pl);

R′ = L′+I′
2 ;

if R′ > R then
L = L′;
I = I′;
R = R′;

end
end

end
return e f f × L, I;

L, I=process_node(c0, 1, {c0});
Rs

t =
L+I

2 ;

5. Optimal Cybersecurity Control Selection
5.1. Cybersecurity Controls

We assume that there exists a list of controls available to apply to the components of
the system. Each control m, when applied to component ci, has a potential effect on the
values of Impactci

t and Likelihoodci
t that are used in the calculation of the cyber risk, such

effect depending on the effectiveness and the nature of the control. We denote the new
Likelihood and Impact values of threat t that result after the application of control m to ci
by Likelihoodci

tm and Impactci
tm , respectively. These values can be calculated by re-applying

DREAD to the system, which is now protected by m.
Additionally, for each control m, a cost metric Costm is defined. This metric is ex-

pressed on a 1–5 scale, corresponding to the qualitative classifications very low cost, low
cost, medium cost, high cost, and very high cost. Note that the use of this scale was dictated
by the fact that it is difficult to measure the cost of implementing a control. However, if
such a measure is available, the replacement of the value in the 1–5 scale with the actual
cost of the control is straightforward.

For a system with N components and a list with M controls with the cost metrics
vector C = [cost1, cost2, ..., costM], the following binary matrix AC compactly depicts the
applied controls throughout the system:

AC =


ac1,1 ac1,2 ... ac1,N
ac2,1 ac2,2 ... ac2,N

... ... ... ...
acM,1 acM,2 ... acM,N

, (11)
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where

aci,j =

{
0, if control i is not applied to component j
1, if control i is applied to component j

. (12)

Then, the total cost TCAC of the applied controls solution AC is given by TCAC =
AC× C.

5.2. Optimization Method

The optimization problem to be solved is to select the optimal (effective and efficient)
set of controls among a list of possible ones. This amounts to selecting the set of controls
AC that minimizes the system residual risk Rs

tAC
, at the lowest total cost TC. A closed

formula that would allow the application of an exact optimization method, and thus the
calculation of the globally optimum solution to the problem, is not possible to construct,
unless many, not necessarily realistic, assumptions are made. On the other hand, the large
size of the search space (all candidate solutions) prohibits the exhaustive search approach.
Hence, a heuristic optimization method has to be employed [46]; we have selected to
use a genetic algorithm, even though any other heuristic optimization method would, in
principle, be applicable.

The design parameters of the genetic algorithm are as follows:

• The search space comprises all possible combinations of controls applied to components.
• Each individual solution is represented by the matrix AC, which is transformed into a

binary vector of size M× N. The value of each element of the vector represents the
decision to apply a specific control to a specific component or not. For example, for a
system with three components and two controls, the solution would be denoted by
the vector [ac11, ac21, ac12, ac22, ac13, ac23], assuming that all controls are applicable to
all components.

• The fitness function is defined as f it(AC) = Rs
tAC

+ Cnorm(AC), where Cnorm(AC) =
TCAC
TCmax

, with TCmax being the largest possible cost, that results when applying all
available controls to all system components.

• The initial population size is 100.
• The mutation probability is 0.1.
• The next generation is determined by uniform crossover, with crossover probability

equal to 0.5, an elite ratio of 0.01, and 0.3 of the population consisting of the fittest
members of the previous generation (aka parents).

• The algorithm terminates when the maximum number of allowed iterations is used.

This number is calculated as itermax = 50×∑
i=M,j=N
i=1,j=1 acij.

The algorithm for selecting the optimal set of security controls is depicted in Algorithm 2.
Note that the fitness function consists of two elements, namely the residual risk (which

takes values in [0, 3]) and the normalized cost (which takes values in [0, 1]). This non-
symmetric approach has been selected to put emphasis on the importance of reducing the
residual risk, even by bearing larger cost. This approach results in initial iterations of the
algorithm tending to generate solutions that minimize the residual risk. In later iterations
of the algorithm, the less costly combinations of controls prevail, among those that lead to
the maximum possible risk reduction.
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Algorithm 2: Algorithm for selecting the optimal set of security controls
Result: Optimal set of security controls is identified
Function calc_fitness(control_sets):

control_sets_fit_scores = [];
foreach c in control_sets do

control_sets_fit_scores[c] = fit_score(c);
end
return control_sets_fit_scores;

Function select_parents(control_sets,control_sets_fit_scores):
parents_control_sets = [] ;
foreach c in control_sets do

if control_sets_fit_scores[c] ∈ upper 30% of control_sets_fit_scores then
parents_control_sets← c;

end
end
return parents_control_sets;

Function select_elite(control_sets,control_sets_fit_scores):
elite_control_sets = [] ;
foreach c in control_sets do

if control_sets_fit_scores[c] ∈ upper 1% of control_sets_fit_scores then
elite_control_sets← c;

end
end
return elite_control_sets;

Function crossover(parent_control_sets):
control_sets = parent_control_sets;
pop = |control_sets|;
while pop<100 do

parenta = random(parent_control_sets);
parentb = random(parent_control_sets) ;
control_setnew = crossover(parenta, parentb);
control_sets← control_setnew;
pop = pop + 1;

end
return control_sets;

Function mutation(control_sets,elite_control_sets):
mutated_control_sets = [];
foreach c in control_sets do

if c ∈ elite_control_sets then
mutated_control_sets← c;

else
mut_c = mutate(c);
mutated_control_sets← mut_c;

end
end
return mutated_control_sets;
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Algorithm 2: Cont.

Function find_solution():
itermax = 50×∑

i=M,j=N
i=1,j=1 acij;

iter = 0;
control_sets← 100 random sets;
while iter < itermax do

control_sets_fit_scores = calc_fitness(control_sets);
parents_control_sets = select_parents(control_sets,control_sets_fit_scores);
elite_control_sets = select_elite(control_sets,control_sets_fit_scores);
control_sets = crossover(parents_control_sets);
control_sets = mutation(control_sets);
iter = iter + 1

fittest_control_set = fittest c ∈ control_sets return fittest_control_set;
find_solution()

6. Application to the C-ES

Autonomous and remotely controlled ships—both variants of the Cyber-Enabled Ship
(C-ES)—are being increasingly developed. At the same time, the maritime transportation
sector contributes significantly to the gross domestic product of many countries around the
world. It is not surprising, then, that the cybersecurity of the sector has been designated a
very high priority by international organizations [47] and national governments [48] alike.
The CPSs comprising the C-ES were identified, and the overall ICT architecture of the
C-ES in the form of a tree structure was proposed in Reference [6]. An extended Maritime
Architectural Framework (e-MAF) was proposed, and the interconnections, dependencies,
and interdependencies among the CPSs of the C-ES were described in Reference [7]. These
results are depicted in the form of directed graphs in Figures 3–6 for the two variants
of the C-ES. Furthermore, an initial threat analysis of the generic ICT architecture of
the C-ES identified the three most vulnerable onboard systems, namely the Automatic
Identification System (AIS), the Electronic Chart Display Information System (ECDIS),
and the Global Maritime Distress and Safety System (GMDSS) [6]. These results were
verified by means of the comprehensive threat and risk analysis that was presented in
Reference [44]. The most critical attack paths within the navigational CPSs of the C-ES
were identified in Reference [22]. The cybersecurity and safety requirements for the CPSs
of the C-ES were identified in References [49,50], and an initial set of cybersecurity controls
that satisfy these requirements was proposed in Reference [44].

Building upon earlier work, and as a step towards defining the cybersecurity architec-
ture of such vessels, we selected the CPSs of the C-ES to illustrate the applicability of the
methods proposed in this paper. The results are presented in the sequel for the autonomous
and the remotely controlled vessel.

6.1. The Cyber-Enabled Ship

The CPSs of the C-ES were identified and described in Reference [6], where a threat
analysis and a qualitative risk analysis were carried out, and the most vulnerable onboard
systems were identified. Three distinct sub-groups of onboard CPSs were identified, namely
the bridge CPSs; the engine CPSs; and the Shore Control Center (SCC) CPSs. The SCC is a
sub-component of the remotely controlled vessel, that aims to control and navigate one or
more ships from the shore. The interconnections, dependencies, and interdependencies of
these CPSs were identified in Reference [7] and were later used to define the cybersecurity
requirements of the C-ES in Reference [49]. The CPSs considered herein are:

• The Autonomous Navigation System (ANS) is responsible for the navigational func-
tions of the vessel. ANS controls all the navigational sub-systems and communicates
with the SCC by transmitting dynamic, voyage, static, and safety data to ensure the
vessel’s safe navigation.
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• The Autonomous Ship Control (ASC) acts as an additional control for the C-ES and
aims to assess the data derived from the sensors and from the SCC.

• The Advanced Sensor Module (ASM) automatically analyzes sensor data to enhance
the environmental observations, such as ships in the vicinity. By leveraging sensor
fusion techniques, this module analyzes data derived from navigational sensors, such
as the Automatic Identification System (AIS) and the Radar.

• The Automatic Identification System (AIS) facilitates the identification, monitoring,
and locating of the vessel by analyzing voyage, dynamic, and static data. Further, the
AIS contributes to the vessel’s collision avoidance system by providing real time data.

• The Collision Avoidance (CA) system ensures the safe passage of the vessel by avoid-
ing potential obstacles. The system analyzes the voyage path by leveraging anti-
collision algorithms conforming to the accordant COLREGs regulations [51].

• The Electronic Chart Display Information System (ECDIS) supports the vessel’s navi-
gation by providing the necessary nautical charts, along with vessel’s attributes, such
as position and speed.

• The marine RADAR provides the bearing and distance of objects in the vicinity of the
vessel, for collision avoidance and navigation at sea.

• The Voyage Data Recorder (VDR) gathers and stores all the navigational data of the
vessel specifically related to vessel’s condition, position, movements, and communica-
tion recordings.

• The Auto Pilot (AP) controls the trajectory of the vessel without requiring continuous
manual control by a human operator.

The methods proposed in Sections 4 and 5 used as input prior results, namely the
system components and their interconnections that make up the system graph representa-
tion; the impact and likelihood values associated with the STRIDE threats and computed
by means of DREAD for each individual component; and the list of available cyber-
security controls, along with information on their cost and effectiveness. Figures 3–6
depict the graph representations of the onboard navigational CPSs of the autonomous
and of the remotely controlled ship, respectively, along with their interconnections and
interdependencies [6,22,44]. Impact and likelihood values associated with the STRIDE
threats and computed by means of DREAD are depicted in Tables 2 and 3 [44]. Each line of
Tables 2 and 3 represents one of the STRIDE threats, indicated by the corresponding initial.
Each column of the Table represents individual CPSs, indicated by their corresponding
initials, as defined in Section 6.1. The values inside the cells are the corresponding impact
(left table) and likelihood (right table) values per STRIDE threat and per individual com-
ponent; these have been calculated by means of Equations (1) and (2), respectively. These
values are subsequently used as input to Algorithm 1, to calculate the aggregate risk of
each CPS.

The list of available cybersecurity controls has been defined based on the NIST guide-
lines for Industrial Control Systems security [5] by following a systematic process proposed
in Reference [44]. The effectiveness and the cost of each security control are estimated
considering their applicability, the extent to which each control reduces the impact or/and
the likelihood, and the resources needed to implement it.
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Table 2. Impact values.

Impact

ANS ASC ASM AIS CA ECDIS SCC RADAR AP VDR

S 2.5 3 2.5 2 2.5 2.5 2.5 2.5 2 2
T 2.5 2 1.28 2.5 2.5 2 2 2.5 2.5 2
R 2 2.5 1.5 2 1.5 1.5 1.5 2 1.5 1.5
I 2.5 2.5 2 2 1.5 3 1.5 1 2 2
D 2.5 2.5 2 2 2.5 3 2.5 2 2.5 2
E 3 3 1.5 2.5 1.5 3 1.5 2 2 2

Table 3. Likelihood values.

Likelihood

ANS ASC ASM AIS CA ECDIS SCC RADAR AP VDR

S 1.33 1.33 2 2.66 1.33 2.32 1.66 2 1 1
T 1.33 2 1.28 2.33 1.66 2.33 1.33 1.66 1 1
R 1 1 1 2.66 1 1 1.33 1.33 1 1
I 1 1 1.33 2.66 1.33 1.66 1.33 1 1 1
D 1.33 1.66 2 2 1.33 2 1.66 2 1 1
E 1.33 1 1 1.33 1 1.66 1 1 1 1

6.2. Optimal Controls for the Autonomous Ship

Autonomous ships are equipped with advanced interconnected CPSs able to navigate
and sail the vessels without human intervention. The onboard navigational CPSs of the
autonomous ship are described by the directed graphs GI(V, E) and GC(V, E) depicted in
Figures 3 and 4, respectively, as discussed in detail in References [6,44]. GI(V, E) represents
information flow connections and GC(V, E) control flow connections. Table 4 depicts
the effect coefficients between all the considered systems. Each line and each column of
Table 4 represents a CPS of the C-ES, indicated by their corresponding initials, as defined
in Section 6.1 above. The values inside the cells are the effect coefficients between each pair
of these systems; specifically, the value in the cell at row i and column j is the value of e f f T

ij .
These have been calculated by means of Equation (13), which derives from Equation (4)
when the function f is the average of the information and control effect coefficients. These
values are also subsequently used as input to Algorithm 1, to calculate the aggregate risk
of each CPS.

e f f T
AB =

e f f I
AB + e f f C

AB
2

. (13)

It is worth noticing that CPSs with high information and control flows, such as the
ANS and the ASC, are characterized by high values of the effect coefficient.

Table 4. Effect coefficients—Autonomous ship.

C-ES AIS ECDIS VDR ASM RADAR AP CA ANS ASC

C-ES 0 0 0 0 0 0 0 0 0 0
ANS 0.208 0.208 0.208 0.208 0.208 0.166 0.208 0.208 0 0
ASC 0.055 0.055 0.055 0.055 0.055 0 0.055 0.055 0.055 0
ASM 0.321 0.071 0.071 0 0 0 0.071 0.321 0.071 0.071
AIS 0.041 0 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041
CA 0.211 0.211 0.045 0.045 0.045 0.045 0.045 0 0.211 0.045

ECDIS 0.05 0.05 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05
RADAR 0,055 0 0.055 0.055 0 0 0.055 0.055 0.555 0

AP 0,045 0.045 0.045 0 0 0.045 0 0.045 0.045 0.045
VDR 0,062 0.062 0.062 0 0 0.062 0 0 0.062 0.062
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Figure 3. Autonomous ship—Navigational Cyber-Physical Systems (CPSs)–GI(V, E)–Information
flow connections.

Figure 4. Autonomous ship—Navigational CPSs–GC(V, E)–Control flow connections.

The security controls in the optimal set are selected from the initial list of available
controls by applying the method described in Section 5. Table 5 depicts the optimal set of
security controls per STRIDE threat and per CPS component. It also depicts the associated
initial global risk (without controls) and the residual global risk (with the optimal controls
applied). These values have been calculated by employing Algorithm 1.

Each line of Table 5 represents one of the STRIDE threats. The first column represents
the global initial risk (i.e., without any security controls in place) of the C-ES, as assessed by
means of Algorithm 1. The second column represents each constituent CPS, and the third
column the optimal set of security controls identified by means of Algorithm 2. Finally, the
fourth column represents the residual risk (i.e., with the optimal set of security controls
in place) of the C-ES, as assessed by applying again Algorithm 1 with the risks of each
individual CPS updated according to the effectiveness of the applied controls.
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Table 5. Optimal controls—Autonomous ship.

Threat Initial Risk Component Controls Residual Risk

Spoofing 1.651

ECDIS Time Stamps (AU-8)

0.964
ASM Unsuccessful Logon Attempts (AC-7)
AIS Remote Access (AC-17)

Radar Security Assessments (CA-2)

AIS Information Input Restrictions (SI-9)
Radar Tamper Protection (PE-3(5))

Tampering 1.615 CA Tamper Protection (PE-3(5)) 1.087
ECDIS Port and I/O Device Access (SC-41)
ASC Tamper Protection (PE-3(5))

Repudiation 1.555 Radar Device Identification and Authentication (IA-3) 0.725AIS Information System Component Inventory (CM-8 (4))

Information Disclosure
AIS Cryptographic Protection (SC-13)

1.629 CA Information System Component Inventory (CM-8 (4)) 0.89
ECDIS Protection of Information at Rest (SC-28)

Denial of Service

AIS Denial of Service Protection (SC-5)
Radar Fail-Safe Procedures (SI-17)

CA Denial of Service Protection (SC-5)
1.373 ANS Fail-Safe Procedures (SI-17) 0.89

ASC Power Equipment and Cabling (PE-9)
ECDIS Device Identification and Authentication (IA-3)
ASM Fail-Safe Procedures (SI-17)

Elevation of Privileges
ANS Device Identification and Authentication (IA-3)

1.129 AIS Internal System Connections (CA-9) 0.725
ECDIS Unsuccessful Logon Attempts (AC-7)

6.3. Optimal Controls for the Remotely Controlled Ship

Remotely controlled vessels are equipped with CPSs that allow the control and op-
eration of the vessel from the shore. Similarly with the autonomous vessel variant, the
navigational CPSs of the remotely controlled ship are described by the directed graphs
G′I(V, E) and G′C(V, E) in Figures 5 and 6. The SCC is a critical component in this variant
of the C-ES, since the control and monitoring of the vessel critically depends on the SCC’s
normal operation. This is why the effect coefficients attain high values between systems
that support the remote operations, such as the SCC, ANS, and ECDIS. All effect coefficients
between the CPSs of the remotely controlled vessel are depicted in Table 6. Similarly to the
case of the autonomous ship, the total effect coefficients have been calculated by means of
Equation (13).

The security controls in the optimal set are selected from the initial list of available
controls by applying the method described in Section 5. Table 7 depicts the optimal set of
security controls per STRIDE threat and per CPS component. It also depicts the associated
initial global risk (without controls) and the residual global risk (with the optimal controls
applied). These values have been calculated in the same manner as the corresponding ones
of the first C-ES variant.
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Figure 5. Remotely controlled ship—Navigational CPSs–G′I(V, E)–Information flows.

Figure 6. Remotely controlled ship—Navigational CPSs–G′C(V, E)–Control flows.

Table 6. Effect coefficients—Remotely controlled ship.

C-ES AIS ECDIS VDR ASM RADAR AP CA ANS SCC

C-ES 0 0 0 0 0 0 0 0 0 0
ANS 0.208 0.208 0.208 0.208 0.208 0.106 0.208 0.208 0 0.208
SCC 0.75 0.5 0.75 0.5 0.5 0 0.75 0.5 0.75 0
ASM 0 0.071 0.071 0 0 0 0.071 0.321 0.071 0
AIS 0.041 0 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041
CA 0 0.295 0.045 0.045 0.045 0.045 0.045 0 0.295 0

ECDIS 0.05 0.05 0 0 0.05 0.05 0.05 0.05 0.05 0.05
RADAR 0.166 0.166 0.166 0.166 0 0 0.166 0.166 0.666 0.166

AP 0.045 0.045 0.045 0 0.045 0.045 0 0.045 0.045 0
VDR 0 0.062 0.062 0 0 0.062 0 0 0.062 0
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Table 7. Optimal controls–Remotely controlled ship.

Threat Initial Risk Component Controls Residual Risk

Spoofing 1.952

SCC Monitoring Physical Access (PE-6 (1))

1.663
ASM Unsuccessful Logon Attempts (AC-7)
AIS Remote Access (AC-17)

Radar Security Assessments (CA-2)

Tampering 1.663

ECDIS Device Identification and Authentication (IA-3)

1.04

ANS Port and I/O Device Access (SC-41)
Radar Tamper Protection (PE-3(5))

CA Tamper Protection (PE-3(5))
SCC Physical Access Control (PE-3)
AIS Information Input Validation (SI-10)

AIS Device Identification and Authentication (IA-3)
Repudiation 1.828 Radar Security Assessments (CA-2) 0.875

SCC Non-repudiation (AU-10)

Information Disclosure 1.828 AIS Cryptographic Protection (SC-13) 1.47SCC Information System Component Inventory (CM-8 (4))

ECDIS Internal System Connections (CA-9)
AIS Information System Backup (CP-9 (1), (2), (3), (5))
CA Denial of Service Protection (SC-5)

Denial of Service 1.622 SCC Denial of Service Protection (SC-5) 0.99
Radar Security Assessments (CA-2)
ANS Emergency Shutoff (PE-10)
ASM Fail-Safe Procedures (SI-17)

Elevation of Privileges 1.205
ANS Device Identification and Authentication (IA-3)

0.875AIS Internal System Connections (CA-9)
ECDIS Unsuccessful Logon Attempts (AC-7)

6.4. Discussion

The overall process followed to carry out the case studies is depicted graphically in
Figure 7. In this figure, rectangles represent processing steps, and skewed rectangles repre-
sent input/output; solid lines link processing steps, whilst dashed ones link input/output
to processing steps. The shaded area delineates the content of this paper.

As can be seen in Table 5, in the case of the autonomous ship, twenty different security
controls are recommended for application to seven of the ten navigational CPSs. The fact
that these CPSs have been found in previous works [6,44] to be the most vulnerable onboard
navigational systems, verifies the consistency of the proposed methods. Similarly, as can
be seen in Table 7, twenty different security controls are recommended for application to
six out of the ten navigational CPSs; again, these CPSs are the most vulnerable.

The optimal controls sets are different in the two variants of the C-ES. This reflects
the difference in the level of autonomy of each variant: According to the IMO classifica-
tion, the remotely controlled vessel lies at the second or third autonomy level, while the
autonomous ship lies at the fourth level [52]. Different levels of autonomy mean different
levels of interaction with humans and different levels of importance of the SCC in the
ship’s operation, which, in turn, mean different levels of risk for the same threat.

The security controls that are recommended by any automated decision support
method, including the methods proposed herein, need to be re-considered, consolidated,
and checked for applicability by domain experts and stakeholders together. The proposed
methods enable the execution of what-if scenarios, including by modifying the initial list of
the available security controls, and/or by modifying parameters of the genetic algorithm.
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Figure 7. Overall process.

7. Conclusions

The growing utilization of highly interconnected CPSs in critical domains increases
the attack surface, making the infrastructure more vulnerable to cyber attacks. In this paper,
we model a complex CPS as a digraph in which nodes represent sub-CPSs and in which
edges represent information and control flows among these subsystems. By leveraging
this model, we proposed a novel method for assessing the aggregate cybersecurity risk of
large scale, complex CPSs comprising interconnected and interdependent components, by
using risk measures of its individual components and the information and control flows
among these components. Building upon this method, we proposed a novel method, based
on evolutionary programming, for selecting a set of effective and efficient cybersecurity
controls among those in an established knowledge base, that reduces the aggregate residual
risk, while at the same time minimizing the cost. We then used both methods to select
optimal sets of cybersecurity controls for the navigational systems of two instances of the
C-ES, namely the remotely controlled ship and the autonomous ship. These sets lead to
the definition of the cybersecurity architecture of such vessels. They have been found to
be in line with previous results that identified the most vulnerable navigational CPSs of
the C-ES, and to minimize the global residual risk. In the future, we intend to develop a
software tool that will implement the proposed methods, and to use it to experientially
examine the usability of the proposed approach with domain experts and stakeholders, in
the C-ES and other critical application domains.
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