
Energy Storage Systems in Residential Applications
for Optimised Economic Operation: Design and

Experimental Validation
Lampros Zyglakis, Angelina D. Bintoudi, Napoleon Bezas, George Isaioglou,

Paschalis A. Gkaidatzis, Athanasios Tryferidis, Dimitrios Tzovaras
Information Technologies Institute, Centre for Research and Technology Hellas

Thessaloniki, Greece
Email:{zyglakis, bintoudi, bezas, isaioglou, pgkaidat, thanasic, dimitrios.tzovaras}iti.gr

Symeon Parcharidis
Systems Sunlight S.A.

Nea Kifisia, Athens, Greece
Email: s.parcharidis@sunlight.gr

Abstract—The integration of distributed battery energy storage
systems has started to increase in power systems recently, as
they can provide multiple services to the system operator, i.e.
frequency regulation, system peak shaving, backup power etc.
Additionally, batteries can be installed even in facilities where
the installation of renewable energy sources are impossible, such
as apartments within urban areas. Consequently, an aggregator
could deploy distributed battery systems to households under
his portfolio, utilising them to capitalize on Demand Response
services while sharing benefits of electricity cost reduction with
them. To enable that, this paper provides an integrated solution
for monitoring, scheduling, and controlling a residential battery
energy storage system. The proposed system has been realised
in the context of inteGRIDy project to a pilot site that consist of
4 different dwellings that are located in Northern Greece. The
analysis of the pilot results revealed that battery systems could
exploit the variation in electricity price in order to succeed some
profit alongside with the provided energy services.

Index Terms—battery energy storage system, optimisation,
demand side management, battery scheduling

I. INTRODUCTION

Towards the transition from current power systems to Smart
Grid, one of the aspects that has drawn the attention of both
the industry and the scientific community is the integration
of Renewable Energy Sources (RESs), with Photovoltaics and
Wind Generators being the most prevalent among them [1].
One of the ways to achieve even greater penetration of RESs is
the utilization of Demand-Side Management (DSM) strategies
[2], and as part of the latter is the utilization of Battery Energy
Storage Systems (BESS). The latter can perform and aid in the
new era of Distribution Networks in a lot of different ways,
such as Frequency Control [3], Voltage Control [4], and other
ancillary services in general [5]. There is also a great variety
of installation schemes available for BESS, such as either near
or next to the Medium to Low Voltage (MV/LV) Substation
[6] therefore choosing a more decentralized approach, or near
the final end-user [7], choosing a more distributed approach.

Buildings have been identified as a source of enormous
untapped efficiency potential, with 40% of global energy
consumption and one third of Green-House-Gas emissions
[8]. Thus, by optimally rearranging their energy consumption,

especially from on-peak to off-peak load hours, this could
prove rather beneficial to the end-user, the utility provider
and the Distribution System Operator (DSO) [9]. BESS can
aid towards that end [10]. In [11] a deterministic approach is
proposed. However, a peaking interval is foretold empirically,
and the BESS is charged to its full capacity prior to this
interval. This could not necessarily lead to a global optimal
result. Another approach could be, as proposed in [12], to
monitor the energy consumption and discharge the BESS at
its full rate when a peak occurs. However, this may lead to
a premature depletion of the BESS due to the deep discharge
of the BESS. Moreover, it can be considered not a sufficiently
realistic approach, since it does not necessarily take into
account the uncertainties of the energy consumption. The
proposed work in [13], and [14], taken into consideration
uncertainties in energy consumption. In [15] a stochastic
optimization is proposed in order to incorporate the energy
consumption uncertainties and therefore provide more realistic
and accurate results improving the final outcome. The results
have been retrieved by conducting simulations using real data.

In this paper however, an integrated BESS installation along
with a Battery Management System (BMS) is examined. The
integrated system is installed in either single or three phase
residential facilities and its performance in real-life situations
is presented. The system is auto-guided via an optimization
engine aiming at minimizing operation cost, while considering
the BESS’ constraints, therefore overcoming any dangers of
depleting the BESS, while providing optimized results.

The remaining of the paper is organised as follows: In
Section II is analysed the system architecture. In Section III a
detailed presentation of the experimental setup and the tested
scenario are given, while Section IV presents the experimental
results under real-life conditions. Finally Section V is devoted
to conclusions and future work.

II. SYSTEM ARCHITECTURE

The design architecture for the installation, operation and
monitoring of a residential DSM scheme based on small BESS
is shown in Fig. 1. It constitutes of both software and hardware



Fig. 1: System Architecture.

elements that enable the production of the necessary timeseries
which are in turn applied to the distributed assets. First,
the core components of the solution, namely the household
consumption forecast and optimised BESS scheduling engines
are installed on a server that interacts with web-based cloud
services which provide the necessary input variables for both
(i.e., the day-ahead pricing scheme and weather forecast). The
server contains dedicated databases upon which all necessary
variables are stored. At household level, a small computing
device, coupled with the BESS and a smart meter, is respon-
sible for the monitoring of the BESS operation and household
consumption and whenever applicable, it controls directly the
BESS in order to dispatch the optimised setpoints in regards
to charging and discharging. In the following paragraphs, the
system architecture components are described in detail.

A. Optimal BESS Scheduling Engine

An optimisation algorithm was developed based on an
optimal microgrid energy management (shortly OptiMEMS)
engine developed by the authors [16]. This component analy-
ses and optimally schedules (in a day-ahead horizon) the dis-
/charging of the BESS in order to modify dynamically the
overall customer’s energy consumption profile. This battery
schedule is optimised towards operating cost minimization
(including battery Levelized Cost Of Energy - LCOE) that
eventually promotes the discharging of the BESS during high-
price hours and charging during low-priced hours. Those
periods coincide evidently with the peak and low load hours,
promoting in this way a load shifting scheme, and providing
the aggregator the ability to offer this as a service to the DSO,
showcasing a scenario of potential participation in an intra-day
market. It should be noted however that the latter is not yet
possible for demonstration, since this market branch is not
open for competition in Greece.

This optimisation tool is solving an adjusted version of the
classic Unit Commitment Problem (a-UCP) in semi-real time,
which is modelled as a Mixed-Integer Linear Programming
(MILP) algorithm. The modelling of the problem takes into
consideration dynamic constraints regarding the forecasted en-
ergy provided to the household loads, the last recorded State-
of-Charge (SoC) of the BESS and the technical specifications
of the battery module along with its interfacing inverter (i.e.,
nominal inverter power, maximum/ minimum SoC, Depth-

of-Discharge (DoD), nominal charge and discharge C-rates).
Furthermore, the OptiMEMS engine receives as input a day-
ahead dynamic pricing scheme. Given the fact that currently
there are no commercially available dynamic pricing schemes
for aggregators (i.e., Real-Time Pricing - RTP) in Greece,
the day-ahead System Marginal Price (SMP) from wholesale
market is being used. An example of the input timeseries (load
forecast and RTP) and output BESS setpoints are shown in
Fig. 2. The most prominent dynamic constraints included in
the mathematical model of the a-UCP are:

• Energy Consumption equal to grid import or battery
discharge,

• Battery setpoints (translated both in power and energy
terms) within the battery module’s limitation (i.e., DoD,
C-rate),

• Physical constraints of the inverter (i.e., binary operation
of charge/discharge modes, power setpoint below the
inverter’s nominal power),

• Legal constraints based on national regulations (e.g.
shared supply of loads by grid and battery prohibited).

Given the highly stochastic nature of residential load con-
sumption, the probability of mismatches between the expected
(forecasted) and measured consumption timeseries can be
prohibitively high, especially in case there are not enough
data to train the forecasting models properly -e.g., in the
beginning of the system running in a household. As a result,
the produced optimal BESS scheduling will not be able to
be applied given that the system’s economic operation will
not be guaranteed. To tackle this issue, in case significant
deviations between forecasted and measured consumption are
detected, the system demands a re-calculation of the optimal
BESS schedule starting from the upcoming timeslot for the
remainder of the day. As input the updated short-term load
forecast is used. This operation attempts to achieve profit even
in case of deviations, making thus the overall system more
robust. For detailed description and analysis of the OptiMEMS

Fig. 2: Optimal Day-ahead BESS Scheduling result as a
function of load forecast and day-ahead dynamic pricing.




